Discover a world of knowledge and get your questions answered at IDNLearn.com. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
To find the enthalpy change (ΔH°) for the reaction, we can use the Van't Hoff equation in its linear form:
[tex]\[ \ln\left(\frac{K2}{K1}\right) = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T2} - \frac{1}{T1}\right) \][/tex]
Given:
- [tex]\( K1 = 8.27 \)[/tex]
- [tex]\( K2 = 6.52 \times 10^{-2} \)[/tex]
- [tex]\( T1 = 25^{\circ} C \)[/tex]
- [tex]\( T2 = 72^{\circ} C \)[/tex]
- [tex]\( R = 8.314 \, \text{J/(mol*K)} \)[/tex] (the universal gas constant)
Convert the temperatures from Celsius to Kelvin:
- [tex]\( T1 = 25 + 273.15 = 298.15 \, K \)[/tex]
- [tex]\( T2 = 72 + 273.15 = 345.15 \, K \)[/tex]
The natural logarithm of the ratio [tex]\( \frac{K2}{K1} \)[/tex] is:
[tex]\[ \ln\left(\frac{K2}{K1}\right) = \ln\left(\frac{6.52 \times 10^{-2}}{8.27}\right) = -4.84293031908513 \][/tex]
Calculate the difference in the inverse of the temperatures:
[tex]\[ \frac{1}{T2} - \frac{1}{T1} = \frac{1}{345.15} - \frac{1}{298.15} = -0.0004567254017962771 \][/tex]
Now, substitute these values into the Van't Hoff equation to solve for ΔH°:
[tex]\[ -4.84293031908513 = -\frac{\Delta H^{\circ}}{8.314} \times -0.0004567254017962771 \][/tex]
Isolate ΔH°:
[tex]\[ \Delta H^{\circ} = \frac{-4.84293031908513}{-0.0004567254017962771} \times 8.314 = 88158.27303346187 \, \text{J/mol} \][/tex]
Therefore, the enthalpy change (ΔH°) for the reaction is:
[tex]\[ \Delta H^{\circ} = 88.16 \, \text{kJ/mol} \quad (\text{since } 1 \, \text{kJ} = 1000 \, \text{J}) \][/tex]
[tex]\[ \ln\left(\frac{K2}{K1}\right) = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T2} - \frac{1}{T1}\right) \][/tex]
Given:
- [tex]\( K1 = 8.27 \)[/tex]
- [tex]\( K2 = 6.52 \times 10^{-2} \)[/tex]
- [tex]\( T1 = 25^{\circ} C \)[/tex]
- [tex]\( T2 = 72^{\circ} C \)[/tex]
- [tex]\( R = 8.314 \, \text{J/(mol*K)} \)[/tex] (the universal gas constant)
Convert the temperatures from Celsius to Kelvin:
- [tex]\( T1 = 25 + 273.15 = 298.15 \, K \)[/tex]
- [tex]\( T2 = 72 + 273.15 = 345.15 \, K \)[/tex]
The natural logarithm of the ratio [tex]\( \frac{K2}{K1} \)[/tex] is:
[tex]\[ \ln\left(\frac{K2}{K1}\right) = \ln\left(\frac{6.52 \times 10^{-2}}{8.27}\right) = -4.84293031908513 \][/tex]
Calculate the difference in the inverse of the temperatures:
[tex]\[ \frac{1}{T2} - \frac{1}{T1} = \frac{1}{345.15} - \frac{1}{298.15} = -0.0004567254017962771 \][/tex]
Now, substitute these values into the Van't Hoff equation to solve for ΔH°:
[tex]\[ -4.84293031908513 = -\frac{\Delta H^{\circ}}{8.314} \times -0.0004567254017962771 \][/tex]
Isolate ΔH°:
[tex]\[ \Delta H^{\circ} = \frac{-4.84293031908513}{-0.0004567254017962771} \times 8.314 = 88158.27303346187 \, \text{J/mol} \][/tex]
Therefore, the enthalpy change (ΔH°) for the reaction is:
[tex]\[ \Delta H^{\circ} = 88.16 \, \text{kJ/mol} \quad (\text{since } 1 \, \text{kJ} = 1000 \, \text{J}) \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.