IDNLearn.com provides a collaborative environment for finding and sharing answers. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.

If a [tex]$0.170 M$[/tex] solution of a weak acid, [tex]$HX$[/tex], has a pH of 4.328 at [tex]$25^{\circ}C$[/tex], what is the [tex]$\Delta G^{\circ}$[/tex] for the dissociation reaction of this acid at [tex]$25^{\circ}C$[/tex]?

Sagot :

Sure, let's work through the solution step by step.

1. Calculate the hydrogen ion concentration [H⁺]:
The pH of the solution is given as 4.328. The pH is related to the hydrogen ion concentration by the following equation:
[tex]\[ \text{[H⁺]} = 10^{-\text{pH}} \][/tex]
Substituting the given pH value:
[tex]\[ \text{[H⁺]} = 10^{-4.328} \][/tex]

2. Compute [H⁺]:
[tex]\[ \text{[H⁺]} = 4.7 \times 10^{-5} \, \text{M} \][/tex]

3. Determine the equilibrium concentrations:
For a weak acid [tex]\(HX\)[/tex] dissociating in water, the reaction is:
[tex]\[ HX \rightleftharpoons H^+ + X^- \][/tex]
Initially, the concentration of [tex]\(HX\)[/tex] is 0.170 M and we assume [tex]\(x\)[/tex] is the amount that dissociates. At equilibrium:
[tex]\[ [H^+] = x = 4.7 \times 10^{-5} \, \text{M} \][/tex]
[tex]\[ [X^-] = x = 4.7 \times 10^{-5} \, \text{M} \][/tex]
[tex]\[ [HX] \approx 0.170 \, \text{M} - x \approx 0.170 \, \text{M} \][/tex]

4. Calculate the acid dissociation constant [tex]\(K_a\)[/tex]:
The expression for the equilibrium constant [tex]\(K_a\)[/tex] for this reaction is:
[tex]\[ K_a = \frac{[H^+][X^-]}{[HX]} \][/tex]
Substituting the equilibrium concentrations:
[tex]\[ K_a = \frac{(4.7 \times 10^{-5})(4.7 \times 10^{-5})}{0.170} \][/tex]

5. Calculate [tex]\(K_a\)[/tex]:
[tex]\[ K_a \approx \frac{(4.7 \times 10^{-5})^2}{0.170} = \frac{2.209 \times 10^{-9}}{0.170} \approx 1.3 \times 10^{-8} \][/tex]

6. Calculate the standard Gibbs free energy change ([tex]\(\Delta G^\circ\)[/tex]):
The relation between [tex]\(K_a\)[/tex] and [tex]\(\Delta G^\circ\)[/tex] is given by:
[tex]\[ \Delta G^\circ = -RT \ln K_a \][/tex]
where:
- [tex]\( R \)[/tex] is the universal gas constant [tex]\( 8.314 \, \text{J} / (\text{mol} \cdot \text{K}) \)[/tex]
- [tex]\( T \)[/tex] is the temperature in Kelvin. The temperature given is [tex]\(25^\circ C\)[/tex] which converts to Kelvin as:
[tex]\[ T = 25 + 273.15 = 298.15 \, \text{K} \][/tex]
- [tex]\( K_a \)[/tex] is the acid dissociation constant [tex]\(1.3 \times 10^{-8}\)[/tex].

7. Compute [tex]\(\Delta G^\circ\)[/tex]:
[tex]\[ \Delta G^\circ = - (8.314 \, \text{J} / (\text{mol} \cdot \text{K})) (298.15 \, \text{K}) \ln(1.3 \times 10^{-8}) \][/tex]
Calculate the natural logarithm:
[tex]\[ \ln(1.3 \times 10^{-8}) \approx \ln(10^{-8}) + \ln(1.3) \approx -18.14 \][/tex]
Putting it all together:
[tex]\[ \Delta G^\circ \approx - (8.314 \times 298.15 \times (-18.14)) \, \text{J} / \text{mol} \][/tex]
Simplify:
[tex]\[ \Delta G^\circ \approx (8.314 \times 298.15 \times 18.14) \approx 44841 \, \text{J} / \text{mol} \approx 44.84 \, \text{kJ} / \text{mol} \][/tex]

Therefore, the standard Gibbs free energy change [tex]\(\Delta G^\circ\)[/tex] for the dissociation reaction of the weak acid [tex]\(HX\)[/tex] at [tex]\(25^\circ C\)[/tex] is approximately [tex]\(44.84 \, \text{kJ} / \text{mol}\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.