Get the information you need quickly and easily with IDNLearn.com. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
To solve this problem, we can utilize the van't Hoff equation, which relates the change in the equilibrium constant of a reaction to the change in temperature. The equation is given by:
[tex]\[ \ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \][/tex]
Where:
- [tex]\(K_1\)[/tex] and [tex]\(K_2\)[/tex] are the initial and final equilibrium constants, respectively.
- [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex] are the initial and final temperatures in Kelvin, respectively.
- [tex]\(\Delta H^\circ\)[/tex] is the standard enthalpy change.
- [tex]\(R\)[/tex] is the gas constant, [tex]\(8.314 \, \text{J/mol·K}\)[/tex].
Given the data in the problem:
[tex]\[ K_1 = 8.27, \quad K_2 = 0.0652, \quad T_1 = 25^\circ\text{C} = 298.15\, \text{K}, \quad T_2 = 72^\circ\text{C} = 345.15\, \text{K} \][/tex]
1. Convert the temperatures to Kelvin (if necessary):
[tex]\[ T_1 = 25 + 273.15 = 298.15 \, \text{K} \][/tex]
[tex]\[ T_2 = 72 + 273.15 = 345.15 \, \text{K} \][/tex]
2. Calculate the natural logarithm of the ratio [tex]\( \frac{K_2}{K_1} \)[/tex]:
[tex]\[ \ln\left(\frac{K_2}{K_1}\right) = \ln\left(\frac{0.0652}{8.27}\right) = -4.84293031908513 \][/tex]
3. Calculate the difference in reciprocal temperatures:
[tex]\[ \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = \left(\frac{1}{345.15} - \frac{1}{298.15}\right) = -0.0004567254017962771 \, \text{K}^{-1} \][/tex]
4. Rearrange the van't Hoff equation to solve for [tex]\(\Delta H^\circ\)[/tex]:
[tex]\[ \Delta H^\circ = -R \cdot \frac{\ln \left( \frac{K_2}{K_1} \right)}{\left( \frac{1}{T_2} - \frac{1}{T_1} \right)} \][/tex]
5. Substitute the known values into the equation:
[tex]\[ \Delta H^\circ = -8.314 \, \text{J/mol·K} \cdot \frac{-4.84293031908513}{-0.0004567254017962771 \, \text{K}^{-1}} = -88158.27303346187 \, \text{J/mol} \][/tex]
Converting Joules to kilojoules since enthalpy is often expressed in these units:
[tex]\[ \Delta H^\circ = -88.158 \, \text{kJ/mol} \][/tex]
Therefore, the standard enthalpy change, [tex]\(\Delta H^\circ\)[/tex], for the reaction is approximately [tex]\(-88.16 \, \text{kJ/mol}\)[/tex].
[tex]\[ \ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \][/tex]
Where:
- [tex]\(K_1\)[/tex] and [tex]\(K_2\)[/tex] are the initial and final equilibrium constants, respectively.
- [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex] are the initial and final temperatures in Kelvin, respectively.
- [tex]\(\Delta H^\circ\)[/tex] is the standard enthalpy change.
- [tex]\(R\)[/tex] is the gas constant, [tex]\(8.314 \, \text{J/mol·K}\)[/tex].
Given the data in the problem:
[tex]\[ K_1 = 8.27, \quad K_2 = 0.0652, \quad T_1 = 25^\circ\text{C} = 298.15\, \text{K}, \quad T_2 = 72^\circ\text{C} = 345.15\, \text{K} \][/tex]
1. Convert the temperatures to Kelvin (if necessary):
[tex]\[ T_1 = 25 + 273.15 = 298.15 \, \text{K} \][/tex]
[tex]\[ T_2 = 72 + 273.15 = 345.15 \, \text{K} \][/tex]
2. Calculate the natural logarithm of the ratio [tex]\( \frac{K_2}{K_1} \)[/tex]:
[tex]\[ \ln\left(\frac{K_2}{K_1}\right) = \ln\left(\frac{0.0652}{8.27}\right) = -4.84293031908513 \][/tex]
3. Calculate the difference in reciprocal temperatures:
[tex]\[ \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = \left(\frac{1}{345.15} - \frac{1}{298.15}\right) = -0.0004567254017962771 \, \text{K}^{-1} \][/tex]
4. Rearrange the van't Hoff equation to solve for [tex]\(\Delta H^\circ\)[/tex]:
[tex]\[ \Delta H^\circ = -R \cdot \frac{\ln \left( \frac{K_2}{K_1} \right)}{\left( \frac{1}{T_2} - \frac{1}{T_1} \right)} \][/tex]
5. Substitute the known values into the equation:
[tex]\[ \Delta H^\circ = -8.314 \, \text{J/mol·K} \cdot \frac{-4.84293031908513}{-0.0004567254017962771 \, \text{K}^{-1}} = -88158.27303346187 \, \text{J/mol} \][/tex]
Converting Joules to kilojoules since enthalpy is often expressed in these units:
[tex]\[ \Delta H^\circ = -88.158 \, \text{kJ/mol} \][/tex]
Therefore, the standard enthalpy change, [tex]\(\Delta H^\circ\)[/tex], for the reaction is approximately [tex]\(-88.16 \, \text{kJ/mol}\)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.