Connect with a community that values knowledge and expertise on IDNLearn.com. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
To solve this problem, we can utilize the van't Hoff equation, which relates the change in the equilibrium constant of a reaction to the change in temperature. The equation is given by:
[tex]\[ \ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \][/tex]
Where:
- [tex]\(K_1\)[/tex] and [tex]\(K_2\)[/tex] are the initial and final equilibrium constants, respectively.
- [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex] are the initial and final temperatures in Kelvin, respectively.
- [tex]\(\Delta H^\circ\)[/tex] is the standard enthalpy change.
- [tex]\(R\)[/tex] is the gas constant, [tex]\(8.314 \, \text{J/mol·K}\)[/tex].
Given the data in the problem:
[tex]\[ K_1 = 8.27, \quad K_2 = 0.0652, \quad T_1 = 25^\circ\text{C} = 298.15\, \text{K}, \quad T_2 = 72^\circ\text{C} = 345.15\, \text{K} \][/tex]
1. Convert the temperatures to Kelvin (if necessary):
[tex]\[ T_1 = 25 + 273.15 = 298.15 \, \text{K} \][/tex]
[tex]\[ T_2 = 72 + 273.15 = 345.15 \, \text{K} \][/tex]
2. Calculate the natural logarithm of the ratio [tex]\( \frac{K_2}{K_1} \)[/tex]:
[tex]\[ \ln\left(\frac{K_2}{K_1}\right) = \ln\left(\frac{0.0652}{8.27}\right) = -4.84293031908513 \][/tex]
3. Calculate the difference in reciprocal temperatures:
[tex]\[ \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = \left(\frac{1}{345.15} - \frac{1}{298.15}\right) = -0.0004567254017962771 \, \text{K}^{-1} \][/tex]
4. Rearrange the van't Hoff equation to solve for [tex]\(\Delta H^\circ\)[/tex]:
[tex]\[ \Delta H^\circ = -R \cdot \frac{\ln \left( \frac{K_2}{K_1} \right)}{\left( \frac{1}{T_2} - \frac{1}{T_1} \right)} \][/tex]
5. Substitute the known values into the equation:
[tex]\[ \Delta H^\circ = -8.314 \, \text{J/mol·K} \cdot \frac{-4.84293031908513}{-0.0004567254017962771 \, \text{K}^{-1}} = -88158.27303346187 \, \text{J/mol} \][/tex]
Converting Joules to kilojoules since enthalpy is often expressed in these units:
[tex]\[ \Delta H^\circ = -88.158 \, \text{kJ/mol} \][/tex]
Therefore, the standard enthalpy change, [tex]\(\Delta H^\circ\)[/tex], for the reaction is approximately [tex]\(-88.16 \, \text{kJ/mol}\)[/tex].
[tex]\[ \ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \][/tex]
Where:
- [tex]\(K_1\)[/tex] and [tex]\(K_2\)[/tex] are the initial and final equilibrium constants, respectively.
- [tex]\(T_1\)[/tex] and [tex]\(T_2\)[/tex] are the initial and final temperatures in Kelvin, respectively.
- [tex]\(\Delta H^\circ\)[/tex] is the standard enthalpy change.
- [tex]\(R\)[/tex] is the gas constant, [tex]\(8.314 \, \text{J/mol·K}\)[/tex].
Given the data in the problem:
[tex]\[ K_1 = 8.27, \quad K_2 = 0.0652, \quad T_1 = 25^\circ\text{C} = 298.15\, \text{K}, \quad T_2 = 72^\circ\text{C} = 345.15\, \text{K} \][/tex]
1. Convert the temperatures to Kelvin (if necessary):
[tex]\[ T_1 = 25 + 273.15 = 298.15 \, \text{K} \][/tex]
[tex]\[ T_2 = 72 + 273.15 = 345.15 \, \text{K} \][/tex]
2. Calculate the natural logarithm of the ratio [tex]\( \frac{K_2}{K_1} \)[/tex]:
[tex]\[ \ln\left(\frac{K_2}{K_1}\right) = \ln\left(\frac{0.0652}{8.27}\right) = -4.84293031908513 \][/tex]
3. Calculate the difference in reciprocal temperatures:
[tex]\[ \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = \left(\frac{1}{345.15} - \frac{1}{298.15}\right) = -0.0004567254017962771 \, \text{K}^{-1} \][/tex]
4. Rearrange the van't Hoff equation to solve for [tex]\(\Delta H^\circ\)[/tex]:
[tex]\[ \Delta H^\circ = -R \cdot \frac{\ln \left( \frac{K_2}{K_1} \right)}{\left( \frac{1}{T_2} - \frac{1}{T_1} \right)} \][/tex]
5. Substitute the known values into the equation:
[tex]\[ \Delta H^\circ = -8.314 \, \text{J/mol·K} \cdot \frac{-4.84293031908513}{-0.0004567254017962771 \, \text{K}^{-1}} = -88158.27303346187 \, \text{J/mol} \][/tex]
Converting Joules to kilojoules since enthalpy is often expressed in these units:
[tex]\[ \Delta H^\circ = -88.158 \, \text{kJ/mol} \][/tex]
Therefore, the standard enthalpy change, [tex]\(\Delta H^\circ\)[/tex], for the reaction is approximately [tex]\(-88.16 \, \text{kJ/mol}\)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.