Join the conversation on IDNLearn.com and get the answers you seek from experts. Our experts are ready to provide prompt and detailed answers to any questions you may have.
Sagot :
Certainly! Let's estimate the population of a country in 2010 using the given data and the exponential growth formula:
The exponential growth formula is given by:
[tex]\[ P(t) = P_0 e^{k t} \][/tex]
Where:
- [tex]\( P(t) \)[/tex] is the population at time [tex]\( t \)[/tex].
- [tex]\( P_0 \)[/tex] is the initial population.
- [tex]\( k \)[/tex] is the growth rate constant.
- [tex]\( t \)[/tex] is the time period.
Step-by-Step Solution:
1. Determine the initial values and given data:
- Initial population in 1992 ([tex]\( P_0 \)[/tex]) = 169 million.
- Population in 1999 ([tex]\( P(7) \)[/tex]) = 174 million. Here, [tex]\( t_1 = 1999 - 1992 = 7 \)[/tex] years.
2. Calculate the growth rate constant ([tex]\( k \)[/tex]):
Using the formula [tex]\( P(t) = P_0 e^{k t} \)[/tex], we need to determine [tex]\( k \)[/tex].
Given:
[tex]\[ P(7) = 174 \][/tex]
[tex]\[ 174 = 169 e^{k \cdot 7} \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ \frac{174}{169} = e^{7k} \][/tex]
Take the natural logarithm on both sides:
[tex]\[ \ln \left( \frac{174}{169} \right) = 7k \][/tex]
[tex]\[ k = \frac{\ln \left( \frac{174}{169} \right)}{7} \][/tex]
After calculating, we find:
[tex]\[ k \approx 0.004165226327350803 \][/tex]
3. Estimate the population in 2010:
Now, we want to find the population in 2010 ([tex]\( P(18) \)[/tex]). Here, [tex]\( t_2 = 2010 - 1992 = 18 \)[/tex] years.
Using the exponential growth formula again:
[tex]\[ P(18) = P_0 e^{k \cdot 18} \][/tex]
Substitute in the values:
[tex]\[ P(18) = 169 e^{0.004165226327350803 \cdot 18} \][/tex]
After calculating, we get:
[tex]\[ P(18) \approx 182.1576987981676 \][/tex]
4. Round to the nearest million:
The estimated population in 2010, rounded to the nearest million, is:
[tex]\[ P(18) \approx 182 \text{ million} \][/tex]
So, the estimated population in 2010 is 182 million.
The exponential growth formula is given by:
[tex]\[ P(t) = P_0 e^{k t} \][/tex]
Where:
- [tex]\( P(t) \)[/tex] is the population at time [tex]\( t \)[/tex].
- [tex]\( P_0 \)[/tex] is the initial population.
- [tex]\( k \)[/tex] is the growth rate constant.
- [tex]\( t \)[/tex] is the time period.
Step-by-Step Solution:
1. Determine the initial values and given data:
- Initial population in 1992 ([tex]\( P_0 \)[/tex]) = 169 million.
- Population in 1999 ([tex]\( P(7) \)[/tex]) = 174 million. Here, [tex]\( t_1 = 1999 - 1992 = 7 \)[/tex] years.
2. Calculate the growth rate constant ([tex]\( k \)[/tex]):
Using the formula [tex]\( P(t) = P_0 e^{k t} \)[/tex], we need to determine [tex]\( k \)[/tex].
Given:
[tex]\[ P(7) = 174 \][/tex]
[tex]\[ 174 = 169 e^{k \cdot 7} \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ \frac{174}{169} = e^{7k} \][/tex]
Take the natural logarithm on both sides:
[tex]\[ \ln \left( \frac{174}{169} \right) = 7k \][/tex]
[tex]\[ k = \frac{\ln \left( \frac{174}{169} \right)}{7} \][/tex]
After calculating, we find:
[tex]\[ k \approx 0.004165226327350803 \][/tex]
3. Estimate the population in 2010:
Now, we want to find the population in 2010 ([tex]\( P(18) \)[/tex]). Here, [tex]\( t_2 = 2010 - 1992 = 18 \)[/tex] years.
Using the exponential growth formula again:
[tex]\[ P(18) = P_0 e^{k \cdot 18} \][/tex]
Substitute in the values:
[tex]\[ P(18) = 169 e^{0.004165226327350803 \cdot 18} \][/tex]
After calculating, we get:
[tex]\[ P(18) \approx 182.1576987981676 \][/tex]
4. Round to the nearest million:
The estimated population in 2010, rounded to the nearest million, is:
[tex]\[ P(18) \approx 182 \text{ million} \][/tex]
So, the estimated population in 2010 is 182 million.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.