IDNLearn.com is your go-to platform for finding reliable answers quickly. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.
Sagot :
To solve this problem, we need to find the value of the decay constant [tex]\( k \)[/tex] using the given data and then use this value to determine the temperature of the can of soda after a specified time.
Given data:
- Initial temperature of the soda, [tex]\( T_0 = 70^\circ F \)[/tex]
- Temperature of the refrigerator, [tex]\( T_a = 34^\circ F \)[/tex]
- Temperature of the soda after 40 minutes, [tex]\( T = 58^\circ F \)[/tex]
- Time, [tex]\( t = 40 \)[/tex] minutes
We use the formula provided by Newton's Law of Cooling:
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]
1. Finding the decay constant [tex]\( k \)[/tex]:
- Plug in the known values:
[tex]\[ 58 = 34 + (70 - 34) e^{-k \cdot 40} \][/tex]
- Simplify inside the parenthesis:
[tex]\[ 58 = 34 + 36 e^{-k \cdot 40} \][/tex]
- Subtract 34 from both sides to isolate the exponential term:
[tex]\[ 24 = 36 e^{-k \cdot 40} \][/tex]
- Divide both sides by 36 to further isolate the exponential term:
[tex]\[ \frac{24}{36} = e^{-k \cdot 40} \][/tex]
[tex]\[ \frac{2}{3} = e^{-k \cdot 40} \][/tex]
- Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{2}{3}\right) = -k \cdot 40 \][/tex]
- Isolate [tex]\( k \)[/tex] by dividing both sides by [tex]\(-40\)[/tex]:
[tex]\[ k = -\frac{\ln\left(\frac{2}{3}\right)}{40} \][/tex]
- Simplify to find [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.01 \][/tex]
2. Determining the temperature of the can of soda after 60 minutes:
- Using [tex]\( t = 60 \)[/tex] minutes, we use the formula again:
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]
[tex]\[ T = 34 + (70 - 34) e^{-0.01 \cdot 60} \][/tex]
[tex]\[ T = 34 + 36 e^{-0.6} \][/tex]
- Calculate the exponential term and then the temperature [tex]\( T \)[/tex]:
[tex]\[ e^{-0.6} \approx 0.549 \][/tex]
[tex]\[ T \approx 34 + 36 \cdot 0.549 \][/tex]
[tex]\[ T \approx 34 + 19.764 \][/tex]
[tex]\[ T \approx 53.764 \][/tex]
- Round to the nearest integer:
[tex]\[ T \approx 54^\circ F \][/tex]
Therefore, the value of [tex]\( k \)[/tex] is [tex]\( 0.01 \)[/tex] and the temperature of the can of soda after 60 minutes in the refrigerator is [tex]\( 54^\circ F \)[/tex].
Given data:
- Initial temperature of the soda, [tex]\( T_0 = 70^\circ F \)[/tex]
- Temperature of the refrigerator, [tex]\( T_a = 34^\circ F \)[/tex]
- Temperature of the soda after 40 minutes, [tex]\( T = 58^\circ F \)[/tex]
- Time, [tex]\( t = 40 \)[/tex] minutes
We use the formula provided by Newton's Law of Cooling:
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]
1. Finding the decay constant [tex]\( k \)[/tex]:
- Plug in the known values:
[tex]\[ 58 = 34 + (70 - 34) e^{-k \cdot 40} \][/tex]
- Simplify inside the parenthesis:
[tex]\[ 58 = 34 + 36 e^{-k \cdot 40} \][/tex]
- Subtract 34 from both sides to isolate the exponential term:
[tex]\[ 24 = 36 e^{-k \cdot 40} \][/tex]
- Divide both sides by 36 to further isolate the exponential term:
[tex]\[ \frac{24}{36} = e^{-k \cdot 40} \][/tex]
[tex]\[ \frac{2}{3} = e^{-k \cdot 40} \][/tex]
- Take the natural logarithm of both sides to solve for [tex]\( k \)[/tex]:
[tex]\[ \ln\left(\frac{2}{3}\right) = -k \cdot 40 \][/tex]
- Isolate [tex]\( k \)[/tex] by dividing both sides by [tex]\(-40\)[/tex]:
[tex]\[ k = -\frac{\ln\left(\frac{2}{3}\right)}{40} \][/tex]
- Simplify to find [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.01 \][/tex]
2. Determining the temperature of the can of soda after 60 minutes:
- Using [tex]\( t = 60 \)[/tex] minutes, we use the formula again:
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]
[tex]\[ T = 34 + (70 - 34) e^{-0.01 \cdot 60} \][/tex]
[tex]\[ T = 34 + 36 e^{-0.6} \][/tex]
- Calculate the exponential term and then the temperature [tex]\( T \)[/tex]:
[tex]\[ e^{-0.6} \approx 0.549 \][/tex]
[tex]\[ T \approx 34 + 36 \cdot 0.549 \][/tex]
[tex]\[ T \approx 34 + 19.764 \][/tex]
[tex]\[ T \approx 53.764 \][/tex]
- Round to the nearest integer:
[tex]\[ T \approx 54^\circ F \][/tex]
Therefore, the value of [tex]\( k \)[/tex] is [tex]\( 0.01 \)[/tex] and the temperature of the can of soda after 60 minutes in the refrigerator is [tex]\( 54^\circ F \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.