IDNLearn.com is designed to help you find the answers you need quickly and easily. Discover trustworthy solutions to your questions quickly and accurately with help from our dedicated community of experts.

Find the equation of the line through [tex]\((-1, 3, 2)\)[/tex] and [tex]\(1^\gamma\)[/tex] to the plane [tex]\(x + 2y + 2z = 3\)[/tex]. Determine the length of [tex]\(1^\gamma\)[/tex] and the coordinates of its foot.

Sagot :

## Solution:

Given:
- A point [tex]\( P(-1, 3, 2) \)[/tex]
- The plane equation [tex]\( x + 2y + 2z = 3 \)[/tex]

We need to:
1. Find the equation of the line through [tex]\((-1, 3, 2)\)[/tex] and perpendicular to the plane.
2. Find the length (distance) of the perpendicular from the point to the plane.
3. Determine the coordinates of the foot of the perpendicular.

### 1. Equation of the Line

The normal to the given plane [tex]\( x + 2y + 2z = 3 \)[/tex] provides the direction vector for the line. The normal vector of the plane can be derived from its coefficients:
[tex]\[ \mathbf{n} = (1, 2, 2) \][/tex]

Thus, the direction vector [tex]\( \mathbf{d} \)[/tex] of the line perpendicular to the plane is:
[tex]\[ \mathbf{d} = (1, 2, 2) \][/tex]

Using the equation of a line in parametric form, through point [tex]\( P(-1, 3, 2) \)[/tex] and in the direction of [tex]\( \mathbf{d} \)[/tex]:
[tex]\[ \vec{r} = \vec{r_0} + t \mathbf{d} \][/tex]

where [tex]\( \vec{r_0} = (-1, 3, 2) \)[/tex] and [tex]\( \mathbf{d} = (1, 2, 2) \)[/tex]. Thus, the parametric equations of the line are:
[tex]\[ \begin{cases} x = -1 + t \\ y = 3 + 2t \\ z = 2 + 2t \end{cases} \][/tex]

### 2. Distance from the Point to the Plane
The formula to find the distance [tex]\( d \)[/tex] from a point [tex]\( (x_1, y_1, z_1) \)[/tex] to a plane [tex]\( Ax + By + Cz = D \)[/tex] is:
[tex]\[ d = \frac{|Ax_1 + By_1 + Cz_1 - D|}{\sqrt{A^2 + B^2 + C^2}} \][/tex]

Substituting the given point [tex]\((-1, 3, 2)\)[/tex] and the plane equation [tex]\( x + 2y + 2z = 3 \)[/tex]:

- Coefficients [tex]\( A = 1 \)[/tex], [tex]\( B = 2 \)[/tex], [tex]\( C = 2 \)[/tex], and [tex]\( D = 3 \)[/tex]
- Point coordinates [tex]\( x_1 = -1 \)[/tex], [tex]\( y_1 = 3 \)[/tex], [tex]\( z_1 = 2 \)[/tex]

Calculate the numerator:
[tex]\[ |1(-1) + 2(3) + 2(2) - 3| = | -1 + 6 + 4 - 3 | = |6| = 6 \][/tex]

Calculate the denominator:
[tex]\[ \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \][/tex]

Thus, the distance [tex]\( d \)[/tex] is:
[tex]\[ d = \frac{6}{3} = 2 \][/tex]

### 3. Coordinates of the Foot of the Perpendicular
The foot of the perpendicular from point [tex]\( P(x_1, y_1, z_1) \)[/tex] to the plane [tex]\( Ax + By + Cz = D \)[/tex] has coordinates [tex]\( (x_0, y_0, z_0) \)[/tex] given by:

[tex]\[ \begin{aligned} x_0 &= x_1 - \frac{A(Ax_1 + By_1 + Cz_1 - D)}{A^2 + B^2 + C^2} \\ y_0 &= y_1 - \frac{B(Ax_1 + By_1 + Cz_1 - D)}{A^2 + B^2 + C^2} \\ z_0 &= z_1 - \frac{C(Ax_1 + By_1 + Cz_1 - D)}{A^2 + B^2 + C^2} \end{aligned} \][/tex]

Plugging in the values:
[tex]\[ \begin{aligned} x_0 &= -1 - \frac{1(6)}{9} = -1 - \frac{6}{9} = -1 - \frac{2}{3} = -\frac{5}{3} = -1.6667 \\ y_0 &= 3 - \frac{2(6)}{9} = 3 - \frac{12}{9} = 3 - \frac{4}{3} = 3 - 1.3333 = 1.6667 \\ z_0 &= 2 - \frac{2(6)}{9} = 2 - \frac{12}{9} = 2 - \frac{4}{3} = 2 - 1.3333 = 0.6667 \end{aligned} \][/tex]

Thus, the coordinates of the foot of the perpendicular are:
[tex]\[ \left( -1.6667, 1.6667, 0.6667 \right) \][/tex]

### Summary

1. Equation of the line through [tex]\( (-1, 3, 2) \)[/tex] and perpendicular to the plane:
[tex]\[ \begin{cases} x = -1 + t \\ y = 3 + 2t \\ z = 2 + 2t \end{cases} \][/tex]

2. Distance from the point to the plane: [tex]\( 2 \)[/tex] units

3. Coordinates of the foot of the perpendicular:
[tex]\[ \left( -1.6667, 1.6667, 0.6667 \right) \][/tex]