IDNLearn.com offers a seamless experience for finding and sharing knowledge. Discover in-depth answers from knowledgeable professionals, providing you with the information you need.
Sagot :
To verify the given statement for the matrix [tex]\(A\)[/tex], we are interested in calculating [tex]\(A \cdot (\operatorname{Adj} A)\)[/tex] and checking whether it equals [tex]\(|A| I\)[/tex], where [tex]\(I\)[/tex] is the identity matrix. We'll proceed through the following steps:
### 1. Calculate the Determinant of [tex]\(A\)[/tex]
Given [tex]\( A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \)[/tex]:
[tex]\[ |A| = \text{det}(A) = -11 \][/tex]
### 2. Calculate the Adjugate (Adjoint) of [tex]\(A\)[/tex]
The adjugate of [tex]\(A\)[/tex], denoted as [tex]\(\operatorname{Adj} A\)[/tex], is calculated. The matrix obtained is:
[tex]\[ \operatorname{Adj} A = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} \][/tex]
### 3. Multiply [tex]\(A\)[/tex] by [tex]\(\operatorname{Adj} A\)[/tex]
We now calculate the product [tex]\(A \cdot (\operatorname{Adj} A)\)[/tex]:
[tex]\[ A \cdot (\operatorname{Adj} A) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} \][/tex]
Upon calculation, this results in:
[tex]\[ A \cdot (\operatorname{Adj} A) = \begin{bmatrix} -11 & 0 & 0 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{bmatrix} \][/tex]
### 4. Form the Determinant Times the Identity Matrix
We multiply the determinant [tex]\(|A| = -11\)[/tex] by the identity matrix of size 3:
[tex]\[ |A| I = -11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -11 & 0 & 0 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{bmatrix} \][/tex]
### 5. Verify the Equality
Compare the results from steps 3 and 4:
[tex]\[ A \cdot (\operatorname{Adj} A) = -11 I = \begin{bmatrix} -11 & 0 & 0 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{bmatrix} \][/tex]
### Conclusion
From the calculations, we can verify that:
[tex]\[ A \cdot (\operatorname{Adj} A) = |A| I \][/tex]
Thus, the given statement is confirmed: [tex]\(A \cdot (\operatorname{Adj} A) = |A| I\)[/tex].
### 1. Calculate the Determinant of [tex]\(A\)[/tex]
Given [tex]\( A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \)[/tex]:
[tex]\[ |A| = \text{det}(A) = -11 \][/tex]
### 2. Calculate the Adjugate (Adjoint) of [tex]\(A\)[/tex]
The adjugate of [tex]\(A\)[/tex], denoted as [tex]\(\operatorname{Adj} A\)[/tex], is calculated. The matrix obtained is:
[tex]\[ \operatorname{Adj} A = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} \][/tex]
### 3. Multiply [tex]\(A\)[/tex] by [tex]\(\operatorname{Adj} A\)[/tex]
We now calculate the product [tex]\(A \cdot (\operatorname{Adj} A)\)[/tex]:
[tex]\[ A \cdot (\operatorname{Adj} A) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} \][/tex]
Upon calculation, this results in:
[tex]\[ A \cdot (\operatorname{Adj} A) = \begin{bmatrix} -11 & 0 & 0 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{bmatrix} \][/tex]
### 4. Form the Determinant Times the Identity Matrix
We multiply the determinant [tex]\(|A| = -11\)[/tex] by the identity matrix of size 3:
[tex]\[ |A| I = -11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -11 & 0 & 0 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{bmatrix} \][/tex]
### 5. Verify the Equality
Compare the results from steps 3 and 4:
[tex]\[ A \cdot (\operatorname{Adj} A) = -11 I = \begin{bmatrix} -11 & 0 & 0 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{bmatrix} \][/tex]
### Conclusion
From the calculations, we can verify that:
[tex]\[ A \cdot (\operatorname{Adj} A) = |A| I \][/tex]
Thus, the given statement is confirmed: [tex]\(A \cdot (\operatorname{Adj} A) = |A| I\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.