Find the best answers to your questions with the help of IDNLearn.com's expert contributors. Discover comprehensive answers to your questions from our community of knowledgeable experts.
Sagot :
Certainly! To solve this problem, we will use Newton's Law of Cooling:
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]
where:
- [tex]\( T \)[/tex] is the temperature of the object after time [tex]\( t \)[/tex]
- [tex]\( T_a \)[/tex] is the ambient temperature (temperature of the refrigerator)
- [tex]\( T_0 \)[/tex] is the initial temperature of the object (the can of soda)
- [tex]\( k \)[/tex] is the decay constant
- [tex]\( t \)[/tex] is the time in minutes
We are given the following values:
- [tex]\( T_a = 34 \)[/tex]°F (temperature of the refrigerator)
- [tex]\( T_0 = 73 \)[/tex]°F (initial temperature of the can of soda)
- [tex]\( T_{40} = 57 \)[/tex]°F (temperature of the can of soda after 40 minutes)
- [tex]\( t_{40} = 40 \)[/tex] minutes (time when the temperature was 57°F)
First, we need to determine the decay constant [tex]\( k \)[/tex]. To do this, we can substitute the given values into the formula:
[tex]\[ 57 = 34 + (73 - 34) e^{-k \cdot 40} \][/tex]
Simplify the equation step-by-step:
[tex]\[ 57 - 34 = 39 e^{-40k} \][/tex]
[tex]\[ 23 = 39 e^{-40k} \][/tex]
To isolate [tex]\( e^{-40k} \)[/tex], divide both sides by 39:
[tex]\[ e^{-40k} = \frac{23}{39} \][/tex]
Taking the natural logarithm (ln) of both sides:
[tex]\[ -40k = \ln\left(\frac{23}{39}\right) \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = -\frac{\ln\left(\frac{23}{39}\right)}{40} \][/tex]
Calculating the value of [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.013 \][/tex]
Now that we have [tex]\( k \)[/tex], we will use it to find the temperature of the can of soda after 60 minutes:
[tex]\[ T_{60} = 34 + (73 - 34) e^{-0.013 \cdot 60} \][/tex]
Simplify:
[tex]\[ T_{60} = 34 + 39 e^{-0.78} \][/tex]
Calculate the value inside the exponent:
[tex]\[ e^{-0.78} \approx 0.459 \][/tex]
Then:
[tex]\[ T_{60} = 34 + 39 \cdot 0.459 \][/tex]
[tex]\[ T_{60} = 34 + 17.901 \][/tex]
[tex]\[ T_{60} \approx 51.901 \][/tex]
Rounding to the nearest degree:
[tex]\[ T_{60} \approx 52 \][/tex]°F
So, the decay constant [tex]\( k \)[/tex] is approximately [tex]\( 0.013 \)[/tex], and the temperature of the can of soda after 60 minutes will be approximately [tex]\( 52 \)[/tex]°F.
[tex]\[ T = T_a + (T_0 - T_a) e^{-k t} \][/tex]
where:
- [tex]\( T \)[/tex] is the temperature of the object after time [tex]\( t \)[/tex]
- [tex]\( T_a \)[/tex] is the ambient temperature (temperature of the refrigerator)
- [tex]\( T_0 \)[/tex] is the initial temperature of the object (the can of soda)
- [tex]\( k \)[/tex] is the decay constant
- [tex]\( t \)[/tex] is the time in minutes
We are given the following values:
- [tex]\( T_a = 34 \)[/tex]°F (temperature of the refrigerator)
- [tex]\( T_0 = 73 \)[/tex]°F (initial temperature of the can of soda)
- [tex]\( T_{40} = 57 \)[/tex]°F (temperature of the can of soda after 40 minutes)
- [tex]\( t_{40} = 40 \)[/tex] minutes (time when the temperature was 57°F)
First, we need to determine the decay constant [tex]\( k \)[/tex]. To do this, we can substitute the given values into the formula:
[tex]\[ 57 = 34 + (73 - 34) e^{-k \cdot 40} \][/tex]
Simplify the equation step-by-step:
[tex]\[ 57 - 34 = 39 e^{-40k} \][/tex]
[tex]\[ 23 = 39 e^{-40k} \][/tex]
To isolate [tex]\( e^{-40k} \)[/tex], divide both sides by 39:
[tex]\[ e^{-40k} = \frac{23}{39} \][/tex]
Taking the natural logarithm (ln) of both sides:
[tex]\[ -40k = \ln\left(\frac{23}{39}\right) \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = -\frac{\ln\left(\frac{23}{39}\right)}{40} \][/tex]
Calculating the value of [tex]\( k \)[/tex]:
[tex]\[ k \approx 0.013 \][/tex]
Now that we have [tex]\( k \)[/tex], we will use it to find the temperature of the can of soda after 60 minutes:
[tex]\[ T_{60} = 34 + (73 - 34) e^{-0.013 \cdot 60} \][/tex]
Simplify:
[tex]\[ T_{60} = 34 + 39 e^{-0.78} \][/tex]
Calculate the value inside the exponent:
[tex]\[ e^{-0.78} \approx 0.459 \][/tex]
Then:
[tex]\[ T_{60} = 34 + 39 \cdot 0.459 \][/tex]
[tex]\[ T_{60} = 34 + 17.901 \][/tex]
[tex]\[ T_{60} \approx 51.901 \][/tex]
Rounding to the nearest degree:
[tex]\[ T_{60} \approx 52 \][/tex]°F
So, the decay constant [tex]\( k \)[/tex] is approximately [tex]\( 0.013 \)[/tex], and the temperature of the can of soda after 60 minutes will be approximately [tex]\( 52 \)[/tex]°F.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.