Find the best solutions to your problems with the help of IDNLearn.com's expert users. Join our interactive Q&A platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
To find the range of the composite function [tex]\((u \circ v)(x)\)[/tex], we need to determine the behavior of [tex]\((u \circ v)(x)\)[/tex] for all values of [tex]\(x\)[/tex] within the domain of [tex]\(v(x)\)[/tex]. Here, we have [tex]\(u(x) = -2x^2 + 3\)[/tex] and [tex]\(v(x) = \frac{1}{x}\)[/tex].
Step-by-step solution:
1. Find the composite function [tex]\( (u \circ v)(x) \)[/tex]:
[tex]\[ (u \circ v)(x) = u(v(x)) = u\left(\frac{1}{x}\right) \][/tex]
2. Substitute [tex]\( v(x) = \frac{1}{x} \)[/tex] into [tex]\( u(x) \)[/tex]:
[tex]\[ u\left(\frac{1}{x}\right) = -2\left(\frac{1}{x}\right)^2 + 3 \][/tex]
3. Simplify the expression:
[tex]\[ u\left(\frac{1}{x}\right) = -2\left(\frac{1}{x^2}\right) + 3 = -\frac{2}{x^2} + 3 \][/tex]
4. Determine the behavior of [tex]\( -\frac{2}{x^2} + 3 \)[/tex]:
- As [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex], [tex]\(\frac{1}{x}\)[/tex] approaches [tex]\(0\)[/tex], so [tex]\(\frac{1}{x^2}\)[/tex] also approaches [tex]\(0\)[/tex], making [tex]\(-\frac{2}{x^2} + 3\)[/tex] approach [tex]\(3\)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\(0\)[/tex] from both positive and negative sides, [tex]\(\frac{1}{x}\)[/tex] approaches [tex]\(\pm \infty\)[/tex], making [tex]\(\frac{1}{x^2}\)[/tex] approach [tex]\(\infty\)[/tex], causing [tex]\(-\frac{2}{x^2}\)[/tex] to approach [tex]\(-\infty\)[/tex]. Thus, [tex]\(-\frac{2}{x^2} + 3\)[/tex] approaches [tex]\(-\infty\)[/tex].
5. Combine the observations to form the range:
- The function approaches the upper bound of [tex]\(3\)[/tex] but never reaches it as [tex]\(x\)[/tex] heads towards [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex].
- The function decreases without bound as [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex].
Therefore, combining these observations, the range of [tex]\((u \circ v)(x)\)[/tex] is:
[tex]\[ (-\infty, 3) \][/tex]
The correct answer is:
[tex]\[(-\infty, 3)\][/tex]
Step-by-step solution:
1. Find the composite function [tex]\( (u \circ v)(x) \)[/tex]:
[tex]\[ (u \circ v)(x) = u(v(x)) = u\left(\frac{1}{x}\right) \][/tex]
2. Substitute [tex]\( v(x) = \frac{1}{x} \)[/tex] into [tex]\( u(x) \)[/tex]:
[tex]\[ u\left(\frac{1}{x}\right) = -2\left(\frac{1}{x}\right)^2 + 3 \][/tex]
3. Simplify the expression:
[tex]\[ u\left(\frac{1}{x}\right) = -2\left(\frac{1}{x^2}\right) + 3 = -\frac{2}{x^2} + 3 \][/tex]
4. Determine the behavior of [tex]\( -\frac{2}{x^2} + 3 \)[/tex]:
- As [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex], [tex]\(\frac{1}{x}\)[/tex] approaches [tex]\(0\)[/tex], so [tex]\(\frac{1}{x^2}\)[/tex] also approaches [tex]\(0\)[/tex], making [tex]\(-\frac{2}{x^2} + 3\)[/tex] approach [tex]\(3\)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\(0\)[/tex] from both positive and negative sides, [tex]\(\frac{1}{x}\)[/tex] approaches [tex]\(\pm \infty\)[/tex], making [tex]\(\frac{1}{x^2}\)[/tex] approach [tex]\(\infty\)[/tex], causing [tex]\(-\frac{2}{x^2}\)[/tex] to approach [tex]\(-\infty\)[/tex]. Thus, [tex]\(-\frac{2}{x^2} + 3\)[/tex] approaches [tex]\(-\infty\)[/tex].
5. Combine the observations to form the range:
- The function approaches the upper bound of [tex]\(3\)[/tex] but never reaches it as [tex]\(x\)[/tex] heads towards [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex].
- The function decreases without bound as [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex].
Therefore, combining these observations, the range of [tex]\((u \circ v)(x)\)[/tex] is:
[tex]\[ (-\infty, 3) \][/tex]
The correct answer is:
[tex]\[(-\infty, 3)\][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.