IDNLearn.com offers a comprehensive platform for finding and sharing knowledge. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
Alright, let's determine the percent yield of water produced in the given reaction step-by-step. Here are the given values and known constants:
1. Mass of hydrogen ([tex]\( H_2 \)[/tex]): 68.3 g
2. Mass of oxygen ([tex]\( O_2 \)[/tex]): 85.4 g
3. Mass of water collected ([tex]\( H_2O \)[/tex]): 86.4 g
Molar masses (g/mol) are:
1. Molar mass of [tex]\( H_2 \)[/tex]: 2.016 g/mol
2. Molar mass of [tex]\( O_2 \)[/tex]: 32.00 g/mol
3. Molar mass of [tex]\( H_2O \)[/tex]: 18.015 g/mol
We need to follow these steps:
### Step 1: Calculate the moles of hydrogen and oxygen
First, calculate the moles of hydrogen [tex]\( H_2 \)[/tex]:
[tex]\[ \text{moles of } H_2 = \frac{\text{mass of } H_2}{\text{molar mass of } H_2} = \frac{68.3 \text{ g}}{2.016 \text{ g/mol}} \approx 33.879 \text{ moles} \][/tex]
Next, calculate the moles of oxygen [tex]\( O_2 \)[/tex]:
[tex]\[ \text{moles of } O_2 = \frac{\text{mass of } O_2}{\text{molar mass of } O_2} = \frac{85.4 \text{ g}}{32.00 \text{ g/mol}} \approx 2.669 \text{ moles} \][/tex]
### Step 2: Determine the stoichiometric relationship
The balanced equation for the reaction is:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
This tells us that 2 moles of [tex]\( H_2 \)[/tex] react with 1 mole of [tex]\( O_2 \)[/tex] to produce 2 moles of [tex]\( H_2O \)[/tex].
### Step 3: Identify the limiting reactant
Calculate the ideal moles of [tex]\( H_2O \)[/tex] produced using hydrogen and oxygen:
For hydrogen:
[tex]\[ \text{From 33.879 moles of } H_2, \text{ we can get:} \quad \left( \frac{2 \text{ moles } H_2O}{2 \text{ moles } H_2} \right) \times 33.879 = 33.879 \text{ moles } H_2O \][/tex]
For oxygen:
[tex]\[ \text{From 2.669 moles of } O_2, \text{ we can get:} \quad \left( \frac{2 \text{ moles } H_2O}{1 \text{ mole } O_2} \right) \times 2.669 = 5.339 \text{ moles } H_2O \][/tex]
The limiting reactant is [tex]\( O_2 \)[/tex] because it produces fewer moles of [tex]\( H_2O \)[/tex].
### Step 4: Calculate the theoretical yield of water
The moles of water produced ideally are determined by the limiting reactant:
[tex]\[ \text{Moles of } H_2O \text{ produced} = 5.339 \text{ moles} \][/tex]
Converting this to mass, we get:
[tex]\[ \text{Mass of } H_2O = \text{moles of } H_2O \times \text{molar mass of } H_2O = 5.339 \times 18.015 \approx 96.155 \text{ g} \][/tex]
### Step 5: Calculate the percent yield
Finally, the percent yield is:
[tex]\[ \text{Percent yield} = \left( \frac{\text{actual yield}}{\text{theoretical yield}} \right) \times 100 = \left( \frac{86.4 \text{ g}}{96.155 \text{ g}} \right) \times 100 \approx 89.85\% \][/tex]
Thus, the percent yield of water produced in this reaction is approximately 89.85%.
1. Mass of hydrogen ([tex]\( H_2 \)[/tex]): 68.3 g
2. Mass of oxygen ([tex]\( O_2 \)[/tex]): 85.4 g
3. Mass of water collected ([tex]\( H_2O \)[/tex]): 86.4 g
Molar masses (g/mol) are:
1. Molar mass of [tex]\( H_2 \)[/tex]: 2.016 g/mol
2. Molar mass of [tex]\( O_2 \)[/tex]: 32.00 g/mol
3. Molar mass of [tex]\( H_2O \)[/tex]: 18.015 g/mol
We need to follow these steps:
### Step 1: Calculate the moles of hydrogen and oxygen
First, calculate the moles of hydrogen [tex]\( H_2 \)[/tex]:
[tex]\[ \text{moles of } H_2 = \frac{\text{mass of } H_2}{\text{molar mass of } H_2} = \frac{68.3 \text{ g}}{2.016 \text{ g/mol}} \approx 33.879 \text{ moles} \][/tex]
Next, calculate the moles of oxygen [tex]\( O_2 \)[/tex]:
[tex]\[ \text{moles of } O_2 = \frac{\text{mass of } O_2}{\text{molar mass of } O_2} = \frac{85.4 \text{ g}}{32.00 \text{ g/mol}} \approx 2.669 \text{ moles} \][/tex]
### Step 2: Determine the stoichiometric relationship
The balanced equation for the reaction is:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
This tells us that 2 moles of [tex]\( H_2 \)[/tex] react with 1 mole of [tex]\( O_2 \)[/tex] to produce 2 moles of [tex]\( H_2O \)[/tex].
### Step 3: Identify the limiting reactant
Calculate the ideal moles of [tex]\( H_2O \)[/tex] produced using hydrogen and oxygen:
For hydrogen:
[tex]\[ \text{From 33.879 moles of } H_2, \text{ we can get:} \quad \left( \frac{2 \text{ moles } H_2O}{2 \text{ moles } H_2} \right) \times 33.879 = 33.879 \text{ moles } H_2O \][/tex]
For oxygen:
[tex]\[ \text{From 2.669 moles of } O_2, \text{ we can get:} \quad \left( \frac{2 \text{ moles } H_2O}{1 \text{ mole } O_2} \right) \times 2.669 = 5.339 \text{ moles } H_2O \][/tex]
The limiting reactant is [tex]\( O_2 \)[/tex] because it produces fewer moles of [tex]\( H_2O \)[/tex].
### Step 4: Calculate the theoretical yield of water
The moles of water produced ideally are determined by the limiting reactant:
[tex]\[ \text{Moles of } H_2O \text{ produced} = 5.339 \text{ moles} \][/tex]
Converting this to mass, we get:
[tex]\[ \text{Mass of } H_2O = \text{moles of } H_2O \times \text{molar mass of } H_2O = 5.339 \times 18.015 \approx 96.155 \text{ g} \][/tex]
### Step 5: Calculate the percent yield
Finally, the percent yield is:
[tex]\[ \text{Percent yield} = \left( \frac{\text{actual yield}}{\text{theoretical yield}} \right) \times 100 = \left( \frac{86.4 \text{ g}}{96.155 \text{ g}} \right) \times 100 \approx 89.85\% \][/tex]
Thus, the percent yield of water produced in this reaction is approximately 89.85%.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.