Discover new information and get your questions answered with IDNLearn.com. Find in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Let's solve both parts of the question step-by-step.
### Part 4: The angle between the lines [tex]\(2x + 3y = 4\)[/tex] and [tex]\(3x - 2y = 7\)[/tex]
First, we need to find the slopes ([tex]\(m\)[/tex]) of both lines:
1. For the line [tex]\(2x + 3y = 4\)[/tex]:
- Rewrite in slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ 3y = -2x + 4 \implies y = -\frac{2}{3}x + \frac{4}{3} \][/tex]
- So, [tex]\(m_1 = -\frac{2}{3}\)[/tex].
2. For the line [tex]\(3x - 2y = 7\)[/tex]:
- Rewrite in slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ -2y = -3x + 7 \implies y = \frac{3}{2}x - \frac{7}{2} \][/tex]
- So, [tex]\(m_2 = \frac{3}{2}\)[/tex].
Next, we use the formula to find the tangent of the angle ([tex]\(\theta\)[/tex]) between two lines with slopes [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex]:
[tex]\[ \tan(\theta) = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right| \][/tex]
Plugging in the values of [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex]:
[tex]\[ \tan(\theta) = \left|\frac{-\frac{2}{3} - \frac{3}{2}}{1 + \left(-\frac{2}{3}\right)\left(\frac{3}{2}\right)}\right| \][/tex]
[tex]\[ = \left|\frac{-\frac{4}{6} - \frac{9}{6}}{1 + \left(-\frac{6}{6}\right)}\right| \][/tex]
[tex]\[ = \left|\frac{-\frac{13}{6}}{1 - 1}\right| \][/tex]
Note there is an error since the denominator became zero. This tells us that [tex]\(\theta = \frac{\pi}{2}\)[/tex] because the slopes imply perpendicular lines due to an undefined tangent value.
Therefore, the angle between the lines is:
[tex]\[ \boxed{\frac{\pi}{2}} \][/tex]
### Part 5: The coordinates of the centroid of a triangle
The coordinates of the centroid [tex]\((G)\)[/tex] of a triangle whose vertices are [tex]\((x_1, y_1)\)[/tex], [tex]\((x_2, y_2)\)[/tex], and [tex]\((x_3, y_3)\)[/tex] can be calculated using the formula:
[tex]\[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \][/tex]
Therefore, the correct answer for the coordinates of the centroid is:
[tex]\[ \boxed{\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)} \][/tex]
### Part 4: The angle between the lines [tex]\(2x + 3y = 4\)[/tex] and [tex]\(3x - 2y = 7\)[/tex]
First, we need to find the slopes ([tex]\(m\)[/tex]) of both lines:
1. For the line [tex]\(2x + 3y = 4\)[/tex]:
- Rewrite in slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ 3y = -2x + 4 \implies y = -\frac{2}{3}x + \frac{4}{3} \][/tex]
- So, [tex]\(m_1 = -\frac{2}{3}\)[/tex].
2. For the line [tex]\(3x - 2y = 7\)[/tex]:
- Rewrite in slope-intercept form [tex]\(y = mx + c\)[/tex]:
[tex]\[ -2y = -3x + 7 \implies y = \frac{3}{2}x - \frac{7}{2} \][/tex]
- So, [tex]\(m_2 = \frac{3}{2}\)[/tex].
Next, we use the formula to find the tangent of the angle ([tex]\(\theta\)[/tex]) between two lines with slopes [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex]:
[tex]\[ \tan(\theta) = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right| \][/tex]
Plugging in the values of [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex]:
[tex]\[ \tan(\theta) = \left|\frac{-\frac{2}{3} - \frac{3}{2}}{1 + \left(-\frac{2}{3}\right)\left(\frac{3}{2}\right)}\right| \][/tex]
[tex]\[ = \left|\frac{-\frac{4}{6} - \frac{9}{6}}{1 + \left(-\frac{6}{6}\right)}\right| \][/tex]
[tex]\[ = \left|\frac{-\frac{13}{6}}{1 - 1}\right| \][/tex]
Note there is an error since the denominator became zero. This tells us that [tex]\(\theta = \frac{\pi}{2}\)[/tex] because the slopes imply perpendicular lines due to an undefined tangent value.
Therefore, the angle between the lines is:
[tex]\[ \boxed{\frac{\pi}{2}} \][/tex]
### Part 5: The coordinates of the centroid of a triangle
The coordinates of the centroid [tex]\((G)\)[/tex] of a triangle whose vertices are [tex]\((x_1, y_1)\)[/tex], [tex]\((x_2, y_2)\)[/tex], and [tex]\((x_3, y_3)\)[/tex] can be calculated using the formula:
[tex]\[ G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \][/tex]
Therefore, the correct answer for the coordinates of the centroid is:
[tex]\[ \boxed{\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.