Join the IDNLearn.com community and get your questions answered by experts. Ask your questions and get detailed, reliable answers from our community of experienced experts.

Take 200 and 150 respectively as the assumed mean for [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] series of 11 values. Then

[tex]\[
d_x = X - 200, \quad d_y = Y - 150
\][/tex]

Given data:

[tex]\[
\sum d_x = 13, \quad \sum d_x^2 = 2667, \quad \sum d_y = 42, \quad \sum d_y^2 = 6964, \quad \sum d_x d_y = 3943
\][/tex]

The value of [tex]\(r\)[/tex] is:


Sagot :

To find the value of the correlation coefficient [tex]\( r \)[/tex], follow these detailed steps:

1. Calculate the Means of [tex]$dx$[/tex] and [tex]$dy$[/tex]:

We have the sums [tex]\(\sum dx\)[/tex] and [tex]\(\sum dy\)[/tex], and we know the number of values, [tex]\( n = 11 \)[/tex].

[tex]\[ \text{Mean of } dx = \frac{\sum dx}{n} = \frac{13}{11} \approx 1.18182 \][/tex]

[tex]\[ \text{Mean of } dy = \frac{\sum dy}{n} = \frac{42}{11} \approx 3.81818 \][/tex]

2. Calculate the Standard Deviations of [tex]$dx$[/tex] and [tex]$dy$[/tex]:

We use the sums of squares [tex]\(\sum dx^2\)[/tex] and [tex]\(\sum dy^2\)[/tex] to find the standard deviations.

[tex]\[ \text{Variance of } dx = \frac{\sum dx^2}{n} - (\text{Mean of } dx)^2 = \frac{2667}{11} - (1.18182)^2 \][/tex]

Simplifying this:

[tex]\[ \text{Variance of } dx \approx \frac{2667}{11} - 1.39669 \approx 242.4545 \][/tex]

[tex]\[ \text{Standard deviation of } dx = \sqrt{242.4545} \approx 15.52604 \][/tex]

Similarly, for [tex]\( dy \)[/tex]:

[tex]\[ \text{Variance of } dy = \frac{\sum dy^2}{n} - (\text{Mean of } dy)^2 = \frac{6964}{11} - (3.81818)^2 \][/tex]

Simplifying this:

[tex]\[ \text{Variance of } dy \approx \frac{6964}{11} - 14.5818 \approx 618.4287 \][/tex]

[tex]\[ \text{Standard deviation of } dy = \sqrt{618.4287} \approx 24.86991 \][/tex]

3. Calculate the Covariance between [tex]$dx$[/tex] and [tex]$dy$[/tex]:

We use [tex]\(\sum dx \, dy\)[/tex]:

[tex]\[ \text{Covariance} = \frac{\sum dx \, dy}{n} - (\text{Mean of } dx \cdot \text{Mean of } dy) = \frac{3943}{11} - (1.18182 \cdot 3.81818) \][/tex]

Simplifying this:

[tex]\[ \text{Covariance} \approx 358.4545 - 4.51235 \approx 353.94215 \][/tex]

4. Calculate the Correlation Coefficient [tex]\( r \)[/tex]:

Now we use the standard deviations and the covariance:

[tex]\[ r = \frac{\text{Covariance}(dx, dy)}{\text{Standard deviation of } dx \cdot \text{Standard deviation of } dy} = \frac{353.94215}{15.52604 \cdot 24.86991} \][/tex]

Simplifying this:

[tex]\[ r \approx \frac{353.94215}{386.0093} \approx 0.91664 \][/tex]

Therefore, the value of the correlation coefficient [tex]\( r \)[/tex] is approximately [tex]\( 0.91664 \)[/tex].