Discover new information and insights with the help of IDNLearn.com. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
To solve this problem, we need to identify which of the given points lie on the line that passes through [tex]\((0, 2)\)[/tex] with a slope of [tex]\(\frac{2}{3}\)[/tex].
The general equation of a line in slope-intercept form is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept. For the line in question:
- The slope [tex]\(m = \frac{2}{3}\)[/tex]
- The y-intercept [tex]\(b = 2\)[/tex]
Thus, the equation of the line is:
[tex]\[ y = \frac{2}{3}x + 2 \][/tex]
Now, we will check each given point to determine if it satisfies this equation.
1. Point [tex]\((-3, 0)\)[/tex]
[tex]\[ y = \frac{2}{3}(-3) + 2 \][/tex]
[tex]\[ y = -2 + 2 \][/tex]
[tex]\[ y = 0 \][/tex]
Since the calculated [tex]\(y\)[/tex] value matches the given point's [tex]\(y\)[/tex] coordinate ([tex]\(0\)[/tex]), the point [tex]\((-3, 0)\)[/tex] lies on the line.
2. Point [tex]\((-2, -3)\)[/tex]
[tex]\[ y = \frac{2}{3}(-2) + 2 \][/tex]
[tex]\[ y = -\frac{4}{3} + 2 \][/tex]
[tex]\[ y = -\frac{4}{3} + \frac{6}{3} \][/tex]
[tex]\[ y = \frac{2}{3} \][/tex]
Since [tex]\( \frac{2}{3} \neq -3 \)[/tex], the point [tex]\((-2, -3)\)[/tex] does not lie on the line.
3. Point [tex]\((2, 5)\)[/tex]
[tex]\[ y = \frac{2}{3}(2) + 2 \][/tex]
[tex]\[ y = \frac{4}{3} + 2 \][/tex]
[tex]\[ y = \frac{4}{3} + \frac{6}{3} \][/tex]
[tex]\[ y = \frac{10}{3} \][/tex]
Since [tex]\( \frac{10}{3} \neq 5 \)[/tex], the point [tex]\((2, 5)\)[/tex] does not lie on the line.
4. Point [tex]\((3, 4)\)[/tex]
[tex]\[ y = \frac{2}{3}(3) + 2 \][/tex]
[tex]\[ y = 2 + 2 \][/tex]
[tex]\[ y = 4 \][/tex]
Since the calculated [tex]\(y\)[/tex] value matches the given point's [tex]\(y\)[/tex] coordinate ([tex]\(4\)[/tex]), the point [tex]\((3, 4)\)[/tex] lies on the line.
5. Point [tex]\((6, 6)\)[/tex]
[tex]\[ y = \frac{2}{3}(6) + 2 \][/tex]
[tex]\[ y = 4 + 2 \][/tex]
[tex]\[ y = 6 \][/tex]
Since the calculated [tex]\(y\)[/tex] value matches the given point's [tex]\(y\)[/tex] coordinate ([tex]\(6\)[/tex]), the point [tex]\((6, 6)\)[/tex] lies on the line.
Therefore, the points that Vera could use to graph the line are:
[tex]\[ \boxed{(-3, 0), (3, 4), (6, 6)} \][/tex]
The general equation of a line in slope-intercept form is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept. For the line in question:
- The slope [tex]\(m = \frac{2}{3}\)[/tex]
- The y-intercept [tex]\(b = 2\)[/tex]
Thus, the equation of the line is:
[tex]\[ y = \frac{2}{3}x + 2 \][/tex]
Now, we will check each given point to determine if it satisfies this equation.
1. Point [tex]\((-3, 0)\)[/tex]
[tex]\[ y = \frac{2}{3}(-3) + 2 \][/tex]
[tex]\[ y = -2 + 2 \][/tex]
[tex]\[ y = 0 \][/tex]
Since the calculated [tex]\(y\)[/tex] value matches the given point's [tex]\(y\)[/tex] coordinate ([tex]\(0\)[/tex]), the point [tex]\((-3, 0)\)[/tex] lies on the line.
2. Point [tex]\((-2, -3)\)[/tex]
[tex]\[ y = \frac{2}{3}(-2) + 2 \][/tex]
[tex]\[ y = -\frac{4}{3} + 2 \][/tex]
[tex]\[ y = -\frac{4}{3} + \frac{6}{3} \][/tex]
[tex]\[ y = \frac{2}{3} \][/tex]
Since [tex]\( \frac{2}{3} \neq -3 \)[/tex], the point [tex]\((-2, -3)\)[/tex] does not lie on the line.
3. Point [tex]\((2, 5)\)[/tex]
[tex]\[ y = \frac{2}{3}(2) + 2 \][/tex]
[tex]\[ y = \frac{4}{3} + 2 \][/tex]
[tex]\[ y = \frac{4}{3} + \frac{6}{3} \][/tex]
[tex]\[ y = \frac{10}{3} \][/tex]
Since [tex]\( \frac{10}{3} \neq 5 \)[/tex], the point [tex]\((2, 5)\)[/tex] does not lie on the line.
4. Point [tex]\((3, 4)\)[/tex]
[tex]\[ y = \frac{2}{3}(3) + 2 \][/tex]
[tex]\[ y = 2 + 2 \][/tex]
[tex]\[ y = 4 \][/tex]
Since the calculated [tex]\(y\)[/tex] value matches the given point's [tex]\(y\)[/tex] coordinate ([tex]\(4\)[/tex]), the point [tex]\((3, 4)\)[/tex] lies on the line.
5. Point [tex]\((6, 6)\)[/tex]
[tex]\[ y = \frac{2}{3}(6) + 2 \][/tex]
[tex]\[ y = 4 + 2 \][/tex]
[tex]\[ y = 6 \][/tex]
Since the calculated [tex]\(y\)[/tex] value matches the given point's [tex]\(y\)[/tex] coordinate ([tex]\(6\)[/tex]), the point [tex]\((6, 6)\)[/tex] lies on the line.
Therefore, the points that Vera could use to graph the line are:
[tex]\[ \boxed{(-3, 0), (3, 4), (6, 6)} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.