IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Get comprehensive and trustworthy answers to all your questions from our knowledgeable community members.
Sagot :
To calculate the molar absorptivity (ε) of a solution using the Beer-Lambert Law, we can follow these steps:
1. Understand the Beer-Lambert Law:
The Beer-Lambert Law is given by the equation:
[tex]\[ A = \varepsilon \cdot c \cdot l \][/tex]
where:
- [tex]\( A \)[/tex] is the absorbance,
- [tex]\( \varepsilon \)[/tex] is the molar absorptivity (in units of M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex]),
- [tex]\( c \)[/tex] is the concentration of the solution (in moles per liter, M),
- [tex]\( l \)[/tex] is the path length of the cell (in cm).
2. Identify the given values:
- Concentration ([tex]\( c \)[/tex]) = [tex]\( 0.5 \times 10^{-3} \)[/tex] M
- Absorbance ([tex]\( A \)[/tex]) = 0.17
- Path length ([tex]\( l \)[/tex]) = 1.3 cm
3. Rearrange the Beer-Lambert equation to solve for molar absorptivity [tex]\( \varepsilon \)[/tex]:
[tex]\[ \varepsilon = \frac{A}{c \cdot l} \][/tex]
4. Substitute the given values into the rearranged equation:
[tex]\[ \varepsilon = \frac{0.17}{(0.5 \times 10^{-3}) \cdot 1.3} \][/tex]
5. Perform the calculation:
[tex]\[ \varepsilon = \frac{0.17}{0.0005 \cdot 1.3} \][/tex]
[tex]\[ \varepsilon = \frac{0.17}{0.00065} \][/tex]
[tex]\[ \varepsilon \approx 261.538 \][/tex]
6. Result:
The molar absorptivity [tex]\( \varepsilon \)[/tex] of the solution is approximately [tex]\( 261.54 \)[/tex] M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex].
Therefore, the molar absorptivity of a [tex]\( 0.5 \times 10^{-3} \)[/tex] M solution with an absorbance of 0.17 and a path length of 1.3 cm is [tex]\( 261.54 \)[/tex] M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex].
1. Understand the Beer-Lambert Law:
The Beer-Lambert Law is given by the equation:
[tex]\[ A = \varepsilon \cdot c \cdot l \][/tex]
where:
- [tex]\( A \)[/tex] is the absorbance,
- [tex]\( \varepsilon \)[/tex] is the molar absorptivity (in units of M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex]),
- [tex]\( c \)[/tex] is the concentration of the solution (in moles per liter, M),
- [tex]\( l \)[/tex] is the path length of the cell (in cm).
2. Identify the given values:
- Concentration ([tex]\( c \)[/tex]) = [tex]\( 0.5 \times 10^{-3} \)[/tex] M
- Absorbance ([tex]\( A \)[/tex]) = 0.17
- Path length ([tex]\( l \)[/tex]) = 1.3 cm
3. Rearrange the Beer-Lambert equation to solve for molar absorptivity [tex]\( \varepsilon \)[/tex]:
[tex]\[ \varepsilon = \frac{A}{c \cdot l} \][/tex]
4. Substitute the given values into the rearranged equation:
[tex]\[ \varepsilon = \frac{0.17}{(0.5 \times 10^{-3}) \cdot 1.3} \][/tex]
5. Perform the calculation:
[tex]\[ \varepsilon = \frac{0.17}{0.0005 \cdot 1.3} \][/tex]
[tex]\[ \varepsilon = \frac{0.17}{0.00065} \][/tex]
[tex]\[ \varepsilon \approx 261.538 \][/tex]
6. Result:
The molar absorptivity [tex]\( \varepsilon \)[/tex] of the solution is approximately [tex]\( 261.54 \)[/tex] M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex].
Therefore, the molar absorptivity of a [tex]\( 0.5 \times 10^{-3} \)[/tex] M solution with an absorbance of 0.17 and a path length of 1.3 cm is [tex]\( 261.54 \)[/tex] M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.