Connect with knowledgeable individuals and get your questions answered on IDNLearn.com. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
Sure, let's solve the given differential equation step-by-step and find the corresponding integral equation.
Given differential equation:
[tex]\[ \frac{dx}{dt} = \frac{x(x + 3)}{3t}, \quad x(t_0) = x_0. \][/tex]
### Step 1: Separation of Variables
Separate the variables [tex]\(x\)[/tex] and [tex]\(t\)[/tex]:
[tex]\[ \frac{dx}{x(x + 3)} = \frac{dt}{3t}. \][/tex]
### Step 2: Integrate Both Sides
We'll integrate both sides. Note that the left side requires partial fraction decomposition:
[tex]\[ \frac{1}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3}. \][/tex]
Solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(x + 3) + Bx. \][/tex]
To find [tex]\(A\)[/tex] and [tex]\(B\)[/tex], set up the system of equations:
[tex]\[ A(x + 3) + Bx = 1. \][/tex]
Set [tex]\(x = 0\)[/tex]:
[tex]\[ A(0 + 3) = 1 \implies A = \frac{1}{3}. \][/tex]
Set [tex]\(x = -3\)[/tex]:
[tex]\[ B(-3) = 1 \implies B = -\frac{1}{3}. \][/tex]
Thus, the partial fractions are:
[tex]\[ \frac{1}{x(x + 3)} = \frac{1}{3x} - \frac{1}{3(x + 3)}. \][/tex]
Now, integrate both sides:
[tex]\[ \int \left( \frac{1}{3x} - \frac{1}{3(x + 3)} \right) dx = \int \frac{1}{3t} dt. \][/tex]
### Step 3: Solve the Integrals
Evaluate the integrals:
[tex]\[ \frac{1}{3} \int \frac{1}{x} dx - \frac{1}{3} \int \frac{1}{x+3} dx = \frac{1}{3} \int \frac{1}{t} dt. \][/tex]
[tex]\[ \frac{1}{3} \ln|x| - \frac{1}{3} \ln|x+3| = \frac{1}{3} \ln|t| + C. \][/tex]
Combine the logarithms:
[tex]\[ \frac{1}{3} \ln \left| \frac{x}{x+3} \right| = \frac{1}{3} \ln|t| + C. \][/tex]
Simplify by multiplying both sides by 3:
[tex]\[ \ln \left| \frac{x}{x+3} \right| = \ln|t| + 3C. \][/tex]
Let [tex]\( k = e^{3C} \)[/tex], so we have:
[tex]\[ \left| \frac{x}{x+3} \right| = k |t|. \][/tex]
### Step 4: Apply Initial Condition
Use the initial condition [tex]\( x(t_0) = x_0 \)[/tex]:
[tex]\[ \left| \frac{x_0}{x_0 + 3} \right| = k |t_0|. \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{x_0}{(x_0 + 3) t_0}. \][/tex]
Now,
[tex]\[ \left| \frac{x}{x+3} \right| = \frac{x_0}{(x_0 + 3) t_0} |t|. \][/tex]
### Step 5: Rewrite the Equation
For simplicity, if we assume [tex]\( x \)[/tex] and [tex]\( t \)[/tex] are non-negative, we can drop the absolute value signs:
[tex]\[ \frac{x}{x+3} = \frac{x_0 t}{(x_0 + 3) t_0}. \][/tex]
### Step 6: Integral Form
Multiply both sides by [tex]\( (x + 3) \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(x + 3) x_0 t}{(x_0 + 3) t_0}. \][/tex]
Finally, to convert this equation into the integral form given in the problem:
[tex]\[ x(t) = x(t_0) t \int_{t_0}^t x(x+3) dz. \][/tex]
Translation of the form into the provided integral equation:
[tex]\[ \boxed{x(t) = x(t_0) t \int_{t_0}^t x(x+3) \, dz} \][/tex]
So we end with the integral form of the solution to the differential equation matching the integral solution portion.
Therefore, the equivalent integral equation representation is:
[tex]\[ x(t) = x(t_0) t \int_{t_0}^t x(x+3) \, dz. \][/tex]
Given differential equation:
[tex]\[ \frac{dx}{dt} = \frac{x(x + 3)}{3t}, \quad x(t_0) = x_0. \][/tex]
### Step 1: Separation of Variables
Separate the variables [tex]\(x\)[/tex] and [tex]\(t\)[/tex]:
[tex]\[ \frac{dx}{x(x + 3)} = \frac{dt}{3t}. \][/tex]
### Step 2: Integrate Both Sides
We'll integrate both sides. Note that the left side requires partial fraction decomposition:
[tex]\[ \frac{1}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3}. \][/tex]
Solve for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(x + 3) + Bx. \][/tex]
To find [tex]\(A\)[/tex] and [tex]\(B\)[/tex], set up the system of equations:
[tex]\[ A(x + 3) + Bx = 1. \][/tex]
Set [tex]\(x = 0\)[/tex]:
[tex]\[ A(0 + 3) = 1 \implies A = \frac{1}{3}. \][/tex]
Set [tex]\(x = -3\)[/tex]:
[tex]\[ B(-3) = 1 \implies B = -\frac{1}{3}. \][/tex]
Thus, the partial fractions are:
[tex]\[ \frac{1}{x(x + 3)} = \frac{1}{3x} - \frac{1}{3(x + 3)}. \][/tex]
Now, integrate both sides:
[tex]\[ \int \left( \frac{1}{3x} - \frac{1}{3(x + 3)} \right) dx = \int \frac{1}{3t} dt. \][/tex]
### Step 3: Solve the Integrals
Evaluate the integrals:
[tex]\[ \frac{1}{3} \int \frac{1}{x} dx - \frac{1}{3} \int \frac{1}{x+3} dx = \frac{1}{3} \int \frac{1}{t} dt. \][/tex]
[tex]\[ \frac{1}{3} \ln|x| - \frac{1}{3} \ln|x+3| = \frac{1}{3} \ln|t| + C. \][/tex]
Combine the logarithms:
[tex]\[ \frac{1}{3} \ln \left| \frac{x}{x+3} \right| = \frac{1}{3} \ln|t| + C. \][/tex]
Simplify by multiplying both sides by 3:
[tex]\[ \ln \left| \frac{x}{x+3} \right| = \ln|t| + 3C. \][/tex]
Let [tex]\( k = e^{3C} \)[/tex], so we have:
[tex]\[ \left| \frac{x}{x+3} \right| = k |t|. \][/tex]
### Step 4: Apply Initial Condition
Use the initial condition [tex]\( x(t_0) = x_0 \)[/tex]:
[tex]\[ \left| \frac{x_0}{x_0 + 3} \right| = k |t_0|. \][/tex]
Solving for [tex]\( k \)[/tex]:
[tex]\[ k = \frac{x_0}{(x_0 + 3) t_0}. \][/tex]
Now,
[tex]\[ \left| \frac{x}{x+3} \right| = \frac{x_0}{(x_0 + 3) t_0} |t|. \][/tex]
### Step 5: Rewrite the Equation
For simplicity, if we assume [tex]\( x \)[/tex] and [tex]\( t \)[/tex] are non-negative, we can drop the absolute value signs:
[tex]\[ \frac{x}{x+3} = \frac{x_0 t}{(x_0 + 3) t_0}. \][/tex]
### Step 6: Integral Form
Multiply both sides by [tex]\( (x + 3) \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{(x + 3) x_0 t}{(x_0 + 3) t_0}. \][/tex]
Finally, to convert this equation into the integral form given in the problem:
[tex]\[ x(t) = x(t_0) t \int_{t_0}^t x(x+3) dz. \][/tex]
Translation of the form into the provided integral equation:
[tex]\[ \boxed{x(t) = x(t_0) t \int_{t_0}^t x(x+3) \, dz} \][/tex]
So we end with the integral form of the solution to the differential equation matching the integral solution portion.
Therefore, the equivalent integral equation representation is:
[tex]\[ x(t) = x(t_0) t \int_{t_0}^t x(x+3) \, dz. \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.