Explore IDNLearn.com's extensive Q&A database and find the answers you need. Ask any question and get a thorough, accurate answer from our community of experienced professionals.
Sagot :
To solve the given problem, we need to follow several steps and use the provided relationships and conditions. Let's tackle this step-by-step.
### Step 1: Determine the Constant [tex]\(k\)[/tex]
We start with the acceleration formula:
[tex]\[ a = -k \sqrt{v} \][/tex]
Using the given information:
- Initial conditions: [tex]\( x = 0 \)[/tex] and [tex]\( v = 81 \, \text{m/s} \)[/tex] at [tex]\( t = 0 \)[/tex].
- At [tex]\( x = 18 \, \text{m} \)[/tex], [tex]\( v = 36 \, \text{m/s} \)[/tex].
We can relate acceleration [tex]\(a\)[/tex] to the change in velocity with respect to position [tex]\(x\)[/tex]:
[tex]\[ a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx} \cdot v \][/tex]
Given [tex]\( a = -k \sqrt{v} \)[/tex], we substitute:
[tex]\[ -k \sqrt{v} = \frac{dv}{dx} \cdot v \][/tex]
Rearranging terms:
[tex]\[ \frac{dv}{dx} = -k \frac{\sqrt{v}}{v} = -k \frac{1}{\sqrt{v}} \][/tex]
Next, we separate variables and integrate both sides:
[tex]\[ \int v^{-1/2} dv = -k \int dx \][/tex]
[tex]\[ 2 \sqrt{v} = -kx + C \][/tex]
Using the initial condition [tex]\( x = 0 \)[/tex] and [tex]\( v = 81 \)[/tex]:
[tex]\[ 2 \sqrt{81} = C \][/tex]
[tex]\[ C = 18 \][/tex]
Now use the condition at [tex]\( x = 18 \)[/tex], [tex]\( v = 36 \)[/tex]:
[tex]\[ 2 \sqrt{36} = -k \cdot 18 + 18 \][/tex]
[tex]\[ 12 = -18k + 18 \][/tex]
[tex]\[ -18k = -6 \][/tex]
[tex]\[ k = \frac{1}{3} \][/tex]
### Step 2: Determine the Velocity at [tex]\( x = 20 \, \text{m} \)[/tex]
Using the relationship derived:
[tex]\[ 2 \sqrt{v} = -\frac{1}{3} x + 18 \][/tex]
Substitute [tex]\( x = 20 \)[/tex]:
[tex]\[ 2 \sqrt{v} = -\frac{1}{3} \cdot 20 + 18 \][/tex]
[tex]\[ 2 \sqrt{v} = \frac{-20}{3} + 18 \][/tex]
[tex]\[ 2 \sqrt{v} = \frac{-20 + 54}{3} \][/tex]
[tex]\[ 2 \sqrt{v} = \frac{34}{3} \][/tex]
[tex]\[ \sqrt{v} = \frac{17}{3} \][/tex]
[tex]\[ v = \left( \frac{17}{3} \right)^2 \][/tex]
[tex]\[ v \approx 32.111 \, \text{m/s} \][/tex]
So, the velocity at [tex]\( x = 20 \, \text{m} \)[/tex] is approximately [tex]\( 32.111 \, \text{m/s} \)[/tex].
### Step 3: Determine the Distance and Time Required for the Particle to Come to Rest
For the particle to come to rest ([tex]\( v = 0 \)[/tex]):
[tex]\[ 2 \sqrt{0} = -\frac{1}{3} x_{rest} + 18 \][/tex]
[tex]\[ x_{rest} = 18 \times 3 \][/tex]
[tex]\[ x_{rest} = 54 \, \text{m} \][/tex]
To find the time [tex]\( t \)[/tex] when the particle comes to rest, use the relationship between velocity and position:
[tex]\[ v = \frac{dx}{dt} \][/tex]
Integrate to find [tex]\( t \)[/tex]:
[tex]\[ t = \int_{0}^{54} \frac{1}{v} dx \][/tex]
Given that [tex]\( v = -\frac{1}{6} x + 9 \)[/tex]:
[tex]\[ t = \int_{0}^{54} \frac{1}{-\frac{1}{6} x + 9} dx \][/tex]
This integral diverges (leading to infinity), meaning the time required for the particle to come to rest is infinite in real terms but represented here mathematically as:
[tex]\[ t = \infty + 18.85i \][/tex]
Therefore, the required answers are:
- (a) Velocity at [tex]\( x = 20 \, \text{m} \)[/tex]: [tex]\( \approx 32.111 \, \text{m/s} \)[/tex]
- (b) Time to rest: [tex]\( \infty \)[/tex]
This indicates an infinite time for the particle to come completely to rest.
### Step 1: Determine the Constant [tex]\(k\)[/tex]
We start with the acceleration formula:
[tex]\[ a = -k \sqrt{v} \][/tex]
Using the given information:
- Initial conditions: [tex]\( x = 0 \)[/tex] and [tex]\( v = 81 \, \text{m/s} \)[/tex] at [tex]\( t = 0 \)[/tex].
- At [tex]\( x = 18 \, \text{m} \)[/tex], [tex]\( v = 36 \, \text{m/s} \)[/tex].
We can relate acceleration [tex]\(a\)[/tex] to the change in velocity with respect to position [tex]\(x\)[/tex]:
[tex]\[ a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx} \cdot v \][/tex]
Given [tex]\( a = -k \sqrt{v} \)[/tex], we substitute:
[tex]\[ -k \sqrt{v} = \frac{dv}{dx} \cdot v \][/tex]
Rearranging terms:
[tex]\[ \frac{dv}{dx} = -k \frac{\sqrt{v}}{v} = -k \frac{1}{\sqrt{v}} \][/tex]
Next, we separate variables and integrate both sides:
[tex]\[ \int v^{-1/2} dv = -k \int dx \][/tex]
[tex]\[ 2 \sqrt{v} = -kx + C \][/tex]
Using the initial condition [tex]\( x = 0 \)[/tex] and [tex]\( v = 81 \)[/tex]:
[tex]\[ 2 \sqrt{81} = C \][/tex]
[tex]\[ C = 18 \][/tex]
Now use the condition at [tex]\( x = 18 \)[/tex], [tex]\( v = 36 \)[/tex]:
[tex]\[ 2 \sqrt{36} = -k \cdot 18 + 18 \][/tex]
[tex]\[ 12 = -18k + 18 \][/tex]
[tex]\[ -18k = -6 \][/tex]
[tex]\[ k = \frac{1}{3} \][/tex]
### Step 2: Determine the Velocity at [tex]\( x = 20 \, \text{m} \)[/tex]
Using the relationship derived:
[tex]\[ 2 \sqrt{v} = -\frac{1}{3} x + 18 \][/tex]
Substitute [tex]\( x = 20 \)[/tex]:
[tex]\[ 2 \sqrt{v} = -\frac{1}{3} \cdot 20 + 18 \][/tex]
[tex]\[ 2 \sqrt{v} = \frac{-20}{3} + 18 \][/tex]
[tex]\[ 2 \sqrt{v} = \frac{-20 + 54}{3} \][/tex]
[tex]\[ 2 \sqrt{v} = \frac{34}{3} \][/tex]
[tex]\[ \sqrt{v} = \frac{17}{3} \][/tex]
[tex]\[ v = \left( \frac{17}{3} \right)^2 \][/tex]
[tex]\[ v \approx 32.111 \, \text{m/s} \][/tex]
So, the velocity at [tex]\( x = 20 \, \text{m} \)[/tex] is approximately [tex]\( 32.111 \, \text{m/s} \)[/tex].
### Step 3: Determine the Distance and Time Required for the Particle to Come to Rest
For the particle to come to rest ([tex]\( v = 0 \)[/tex]):
[tex]\[ 2 \sqrt{0} = -\frac{1}{3} x_{rest} + 18 \][/tex]
[tex]\[ x_{rest} = 18 \times 3 \][/tex]
[tex]\[ x_{rest} = 54 \, \text{m} \][/tex]
To find the time [tex]\( t \)[/tex] when the particle comes to rest, use the relationship between velocity and position:
[tex]\[ v = \frac{dx}{dt} \][/tex]
Integrate to find [tex]\( t \)[/tex]:
[tex]\[ t = \int_{0}^{54} \frac{1}{v} dx \][/tex]
Given that [tex]\( v = -\frac{1}{6} x + 9 \)[/tex]:
[tex]\[ t = \int_{0}^{54} \frac{1}{-\frac{1}{6} x + 9} dx \][/tex]
This integral diverges (leading to infinity), meaning the time required for the particle to come to rest is infinite in real terms but represented here mathematically as:
[tex]\[ t = \infty + 18.85i \][/tex]
Therefore, the required answers are:
- (a) Velocity at [tex]\( x = 20 \, \text{m} \)[/tex]: [tex]\( \approx 32.111 \, \text{m/s} \)[/tex]
- (b) Time to rest: [tex]\( \infty \)[/tex]
This indicates an infinite time for the particle to come completely to rest.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your questions are important to us at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.