Get detailed and accurate answers to your questions on IDNLearn.com. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
Certainly! Let's complete the steps to prove that the quadrilateral [tex]\( KITE \)[/tex] with vertices [tex]\( K (0,-2) \)[/tex], [tex]\( I (1,2) \)[/tex], [tex]\( T (7,5) \)[/tex], and [tex]\( E (4,-1) \)[/tex] is a kite.
Using the distance formula, the distances between the points are calculated as follows:
1. Calculate [tex]\( KI \)[/tex]:
[tex]\[ KI = \sqrt{(I_x - K_x)^2 + (I_y - K_y)^2} = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1 + 16} = \sqrt{17} \][/tex]
2. Calculate [tex]\( KE \)[/tex]:
[tex]\[ KE = \sqrt{(E_x - K_x)^2 + (E_y - K_y)^2} = \sqrt{(4 - 0)^2 + (-1 - (-2))^2} = \sqrt{16 + 1} = \sqrt{17} \][/tex]
3. Calculate [tex]\( IT \)[/tex]:
[tex]\[ IT = \sqrt{(T_x - I_x)^2 + (T_y - I_y)^2} = \sqrt{(7 - 1)^2 + (5 - 2))^2 = \sqrt{36 + 9} = \sqrt{45} \][/tex]
4. Calculate [tex]\( ET \)[/tex]:
[tex]\[ ET = \sqrt{(T_x - E_x)^2 + (T_y - E_y)^2} = \sqrt{(7 - 4)^2 + (5 + 1))^2} = \sqrt{9 + 36} = \sqrt{45} \][/tex]
Summarizing the results, we have the lengths:
[tex]\[ KI = \sqrt{17}, \quad KE = \sqrt{17}, \quad IT = \sqrt{45}, \quad ET = \sqrt{45} \][/tex]
Both pairs of adjacent sides [tex]\( KI \)[/tex] and [tex]\( KE \)[/tex] as well as [tex]\( IT \)[/tex] and [tex]\( ET \)[/tex] are equal in length.
Therefore, [tex]\( KITE \)[/tex] is a kite because it has two pairs of adjacent sides of equal length.
Now, let's fill in the drop-down menu selections:
- [tex]\(\sqrt{17}\)[/tex]
- [tex]\(KE = \sqrt{17}\)[/tex]
- [tex]\(IT = \sqrt{45}\)[/tex]
- [tex]\(ET = \sqrt{45}\)[/tex]
- [tex]\(Therefore, \ KITE \ is \ a \ kite \ because \ it \ has \ two \ pairs \ of \ adjacent \ sides \ of \ equal \ length.\)[/tex]
Using the distance formula, the distances between the points are calculated as follows:
1. Calculate [tex]\( KI \)[/tex]:
[tex]\[ KI = \sqrt{(I_x - K_x)^2 + (I_y - K_y)^2} = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1 + 16} = \sqrt{17} \][/tex]
2. Calculate [tex]\( KE \)[/tex]:
[tex]\[ KE = \sqrt{(E_x - K_x)^2 + (E_y - K_y)^2} = \sqrt{(4 - 0)^2 + (-1 - (-2))^2} = \sqrt{16 + 1} = \sqrt{17} \][/tex]
3. Calculate [tex]\( IT \)[/tex]:
[tex]\[ IT = \sqrt{(T_x - I_x)^2 + (T_y - I_y)^2} = \sqrt{(7 - 1)^2 + (5 - 2))^2 = \sqrt{36 + 9} = \sqrt{45} \][/tex]
4. Calculate [tex]\( ET \)[/tex]:
[tex]\[ ET = \sqrt{(T_x - E_x)^2 + (T_y - E_y)^2} = \sqrt{(7 - 4)^2 + (5 + 1))^2} = \sqrt{9 + 36} = \sqrt{45} \][/tex]
Summarizing the results, we have the lengths:
[tex]\[ KI = \sqrt{17}, \quad KE = \sqrt{17}, \quad IT = \sqrt{45}, \quad ET = \sqrt{45} \][/tex]
Both pairs of adjacent sides [tex]\( KI \)[/tex] and [tex]\( KE \)[/tex] as well as [tex]\( IT \)[/tex] and [tex]\( ET \)[/tex] are equal in length.
Therefore, [tex]\( KITE \)[/tex] is a kite because it has two pairs of adjacent sides of equal length.
Now, let's fill in the drop-down menu selections:
- [tex]\(\sqrt{17}\)[/tex]
- [tex]\(KE = \sqrt{17}\)[/tex]
- [tex]\(IT = \sqrt{45}\)[/tex]
- [tex]\(ET = \sqrt{45}\)[/tex]
- [tex]\(Therefore, \ KITE \ is \ a \ kite \ because \ it \ has \ two \ pairs \ of \ adjacent \ sides \ of \ equal \ length.\)[/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.