Get detailed and accurate answers to your questions on IDNLearn.com. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
Certainly! Let's complete the steps to prove that the quadrilateral [tex]\( KITE \)[/tex] with vertices [tex]\( K (0,-2) \)[/tex], [tex]\( I (1,2) \)[/tex], [tex]\( T (7,5) \)[/tex], and [tex]\( E (4,-1) \)[/tex] is a kite.
Using the distance formula, the distances between the points are calculated as follows:
1. Calculate [tex]\( KI \)[/tex]:
[tex]\[ KI = \sqrt{(I_x - K_x)^2 + (I_y - K_y)^2} = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1 + 16} = \sqrt{17} \][/tex]
2. Calculate [tex]\( KE \)[/tex]:
[tex]\[ KE = \sqrt{(E_x - K_x)^2 + (E_y - K_y)^2} = \sqrt{(4 - 0)^2 + (-1 - (-2))^2} = \sqrt{16 + 1} = \sqrt{17} \][/tex]
3. Calculate [tex]\( IT \)[/tex]:
[tex]\[ IT = \sqrt{(T_x - I_x)^2 + (T_y - I_y)^2} = \sqrt{(7 - 1)^2 + (5 - 2))^2 = \sqrt{36 + 9} = \sqrt{45} \][/tex]
4. Calculate [tex]\( ET \)[/tex]:
[tex]\[ ET = \sqrt{(T_x - E_x)^2 + (T_y - E_y)^2} = \sqrt{(7 - 4)^2 + (5 + 1))^2} = \sqrt{9 + 36} = \sqrt{45} \][/tex]
Summarizing the results, we have the lengths:
[tex]\[ KI = \sqrt{17}, \quad KE = \sqrt{17}, \quad IT = \sqrt{45}, \quad ET = \sqrt{45} \][/tex]
Both pairs of adjacent sides [tex]\( KI \)[/tex] and [tex]\( KE \)[/tex] as well as [tex]\( IT \)[/tex] and [tex]\( ET \)[/tex] are equal in length.
Therefore, [tex]\( KITE \)[/tex] is a kite because it has two pairs of adjacent sides of equal length.
Now, let's fill in the drop-down menu selections:
- [tex]\(\sqrt{17}\)[/tex]
- [tex]\(KE = \sqrt{17}\)[/tex]
- [tex]\(IT = \sqrt{45}\)[/tex]
- [tex]\(ET = \sqrt{45}\)[/tex]
- [tex]\(Therefore, \ KITE \ is \ a \ kite \ because \ it \ has \ two \ pairs \ of \ adjacent \ sides \ of \ equal \ length.\)[/tex]
Using the distance formula, the distances between the points are calculated as follows:
1. Calculate [tex]\( KI \)[/tex]:
[tex]\[ KI = \sqrt{(I_x - K_x)^2 + (I_y - K_y)^2} = \sqrt{(1 - 0)^2 + (2 - (-2))^2} = \sqrt{1 + 16} = \sqrt{17} \][/tex]
2. Calculate [tex]\( KE \)[/tex]:
[tex]\[ KE = \sqrt{(E_x - K_x)^2 + (E_y - K_y)^2} = \sqrt{(4 - 0)^2 + (-1 - (-2))^2} = \sqrt{16 + 1} = \sqrt{17} \][/tex]
3. Calculate [tex]\( IT \)[/tex]:
[tex]\[ IT = \sqrt{(T_x - I_x)^2 + (T_y - I_y)^2} = \sqrt{(7 - 1)^2 + (5 - 2))^2 = \sqrt{36 + 9} = \sqrt{45} \][/tex]
4. Calculate [tex]\( ET \)[/tex]:
[tex]\[ ET = \sqrt{(T_x - E_x)^2 + (T_y - E_y)^2} = \sqrt{(7 - 4)^2 + (5 + 1))^2} = \sqrt{9 + 36} = \sqrt{45} \][/tex]
Summarizing the results, we have the lengths:
[tex]\[ KI = \sqrt{17}, \quad KE = \sqrt{17}, \quad IT = \sqrt{45}, \quad ET = \sqrt{45} \][/tex]
Both pairs of adjacent sides [tex]\( KI \)[/tex] and [tex]\( KE \)[/tex] as well as [tex]\( IT \)[/tex] and [tex]\( ET \)[/tex] are equal in length.
Therefore, [tex]\( KITE \)[/tex] is a kite because it has two pairs of adjacent sides of equal length.
Now, let's fill in the drop-down menu selections:
- [tex]\(\sqrt{17}\)[/tex]
- [tex]\(KE = \sqrt{17}\)[/tex]
- [tex]\(IT = \sqrt{45}\)[/tex]
- [tex]\(ET = \sqrt{45}\)[/tex]
- [tex]\(Therefore, \ KITE \ is \ a \ kite \ because \ it \ has \ two \ pairs \ of \ adjacent \ sides \ of \ equal \ length.\)[/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.