Explore IDNLearn.com to discover insightful answers from experts and enthusiasts alike. Ask anything and receive prompt, well-informed answers from our community of experienced experts.
Sagot :
To determine the number of moles of oxygen in the lung at maximum capacity, we can use the Ideal Gas Law equation:
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure,
- [tex]\( V \)[/tex] is the volume,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Here's how we can find the number of moles step-by-step:
1. Identify the given values:
- Volume ([tex]\( V \)[/tex]) = 3.0 liters
- Pressure ([tex]\( P \)[/tex]) = 21.1 kilopascals
- Temperature ([tex]\( T \)[/tex]) = 295 Kelvin
- Ideal gas constant ([tex]\( R \)[/tex]) = 8.314 L·kPa/(mol·K)
2. Rearrange the Ideal Gas Law to solve for [tex]\( n \)[/tex] (the number of moles):
[tex]\[ n = \frac{PV}{RT} \][/tex]
3. Substitute the given values into the equation:
[tex]\[ n = \frac{(21.1 \text{ kPa}) \times (3.0 \text{ L})}{(8.314 \text{ L·kPa/(mol·K)}) \times (295 \text{ K})} \][/tex]
4. Perform the calculation:
[tex]\[ n = \frac{63.3 \text{ kPa·L}}{2459.13 \text{ L·kPa/(mol·K)}} \][/tex]
5. Simplify the fraction to find the number of moles [tex]\( n \)[/tex]:
[tex]\[ n = 0.02580902949079152 \text{ mol} \][/tex]
6. Rounding the answer to an appropriate number of significant figures:
Given that the initial values (3.0, 21.1, and 295) have three significant figures, the result should be rounded to three significant figures as well:
[tex]\[ n \approx 0.026 \text{ mol} \][/tex]
So, the number of moles of oxygen in the lung at maximum capacity is closest to option A.
Final Answer:
A. [tex]\(\quad 0.026 \text{ mol} \)[/tex]
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure,
- [tex]\( V \)[/tex] is the volume,
- [tex]\( n \)[/tex] is the number of moles,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Here's how we can find the number of moles step-by-step:
1. Identify the given values:
- Volume ([tex]\( V \)[/tex]) = 3.0 liters
- Pressure ([tex]\( P \)[/tex]) = 21.1 kilopascals
- Temperature ([tex]\( T \)[/tex]) = 295 Kelvin
- Ideal gas constant ([tex]\( R \)[/tex]) = 8.314 L·kPa/(mol·K)
2. Rearrange the Ideal Gas Law to solve for [tex]\( n \)[/tex] (the number of moles):
[tex]\[ n = \frac{PV}{RT} \][/tex]
3. Substitute the given values into the equation:
[tex]\[ n = \frac{(21.1 \text{ kPa}) \times (3.0 \text{ L})}{(8.314 \text{ L·kPa/(mol·K)}) \times (295 \text{ K})} \][/tex]
4. Perform the calculation:
[tex]\[ n = \frac{63.3 \text{ kPa·L}}{2459.13 \text{ L·kPa/(mol·K)}} \][/tex]
5. Simplify the fraction to find the number of moles [tex]\( n \)[/tex]:
[tex]\[ n = 0.02580902949079152 \text{ mol} \][/tex]
6. Rounding the answer to an appropriate number of significant figures:
Given that the initial values (3.0, 21.1, and 295) have three significant figures, the result should be rounded to three significant figures as well:
[tex]\[ n \approx 0.026 \text{ mol} \][/tex]
So, the number of moles of oxygen in the lung at maximum capacity is closest to option A.
Final Answer:
A. [tex]\(\quad 0.026 \text{ mol} \)[/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your questions deserve accurate answers. Thank you for visiting IDNLearn.com, and see you again for more solutions.