IDNLearn.com makes it easy to find the right answers to your questions. Join our knowledgeable community and get detailed, reliable answers to all your questions.
Sagot :
Let's solve the problem step-by-step using the provided information:
1. Given Data:
- Volume of the lightbulb, [tex]\( V = 75.0 \)[/tex] milliliters
- Moles of neon gas, [tex]\( n = 7.16 \times 10^{-4} \)[/tex] moles
- Absolute pressure, [tex]\( P = 116.8 \)[/tex] kilopascals (kPa)
- Ideal gas constant, [tex]\( R = 8.314 \frac{ L \cdot kPa }{ mol \cdot K} \)[/tex]
- Standard atmospheric pressure, [tex]\( 1 \)[/tex] atm [tex]\( = 101.3 \)[/tex] kPa
2. Convert the volume from milliliters to liters:
[tex]\[ V = 75.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.0750 \text{ L} \][/tex]
3. Convert pressure from kilopascals to atmospheres:
[tex]\[ P_{atm} = \frac{116.8 \text{ kPa}}{101.3 \text{ kPa/atm}} \approx 1.153 \text{ atm} \][/tex]
4. Use the Ideal Gas Law [tex]\((PV = nRT)\)[/tex] to solve for the temperature [tex]\(T\)[/tex]:
[tex]\[ T = \frac{PV}{nR} \][/tex]
Substituting in the values, we get:
[tex]\[ T = \frac{(1.153 \text{ atm}) \times (0.0750 \text{ L})}{(7.16 \times 10^{-4} \text{ moles}) \times (0.0821 \frac{L \cdot atm}{mol \cdot K})} \][/tex]
5. Perform the calculation:
[tex]\[ T = \frac{0.086475 \text{ L} \cdot \text{ atm}}{0.000058828 \text{ L} \cdot \text{ atm} / \text{ K}} \][/tex]
[tex]\[ T \approx 14.527 \text{ K} \][/tex]
Expressing the final temperature to three significant figures:
The temperature of the lightbulb was [tex]\(\boxed{14.5} \text{ K}\)[/tex]
1. Given Data:
- Volume of the lightbulb, [tex]\( V = 75.0 \)[/tex] milliliters
- Moles of neon gas, [tex]\( n = 7.16 \times 10^{-4} \)[/tex] moles
- Absolute pressure, [tex]\( P = 116.8 \)[/tex] kilopascals (kPa)
- Ideal gas constant, [tex]\( R = 8.314 \frac{ L \cdot kPa }{ mol \cdot K} \)[/tex]
- Standard atmospheric pressure, [tex]\( 1 \)[/tex] atm [tex]\( = 101.3 \)[/tex] kPa
2. Convert the volume from milliliters to liters:
[tex]\[ V = 75.0 \text{ mL} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 0.0750 \text{ L} \][/tex]
3. Convert pressure from kilopascals to atmospheres:
[tex]\[ P_{atm} = \frac{116.8 \text{ kPa}}{101.3 \text{ kPa/atm}} \approx 1.153 \text{ atm} \][/tex]
4. Use the Ideal Gas Law [tex]\((PV = nRT)\)[/tex] to solve for the temperature [tex]\(T\)[/tex]:
[tex]\[ T = \frac{PV}{nR} \][/tex]
Substituting in the values, we get:
[tex]\[ T = \frac{(1.153 \text{ atm}) \times (0.0750 \text{ L})}{(7.16 \times 10^{-4} \text{ moles}) \times (0.0821 \frac{L \cdot atm}{mol \cdot K})} \][/tex]
5. Perform the calculation:
[tex]\[ T = \frac{0.086475 \text{ L} \cdot \text{ atm}}{0.000058828 \text{ L} \cdot \text{ atm} / \text{ K}} \][/tex]
[tex]\[ T \approx 14.527 \text{ K} \][/tex]
Expressing the final temperature to three significant figures:
The temperature of the lightbulb was [tex]\(\boxed{14.5} \text{ K}\)[/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.