Engage with knowledgeable experts and get accurate answers on IDNLearn.com. Get accurate and timely answers to your queries from our extensive network of experienced professionals.
Sagot :
To determine the volume that a given amount of chlorine gas will occupy at [tex]\(-20^{\circ} C\)[/tex] from its volume at [tex]\(200^{\circ} C\)[/tex], we can use Charles's Law. Charles's Law states that for a given mass of an ideal gas at constant pressure, the volume of the gas is directly proportional to its absolute temperature (Kelvin). The formula is:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
where:
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes, respectively.
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final absolute temperatures, respectively.
Given data:
- Initial temperature, [tex]\( T_1 = 200^{\circ} C \)[/tex]
- Final temperature, [tex]\( T_2 = -20^{\circ} C \)[/tex]
- Initial volume, [tex]\( V_1 = 972.70 \text{ mL} \)[/tex]
First, we need to convert the temperatures from Celsius to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(^{\circ} C) + 273.15 \][/tex]
Calculating the initial and final temperatures in Kelvin:
- Initial temperature: [tex]\( T_1 = 200 + 273.15 = 473.15 \text{ K} \)[/tex]
- Final temperature: [tex]\( T_2 = -20 + 273.15 = 253.15 \text{ K} \)[/tex]
Now we can use Charles's Law to find the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]
Substituting in the known values:
[tex]\[ V_2 = 972.70 \text{ mL} \times \frac{253.15 \text{ K}}{473.15 \text{ K}} \][/tex]
After calculating, we get:
[tex]\[ V_2 \approx 520.42 \text{ mL} \][/tex]
Therefore, the volume of the chlorine gas at [tex]\(-20^{\circ} C\)[/tex] will be approximately [tex]\(520.42 \text{ mL}\)[/tex].
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
where:
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes, respectively.
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final absolute temperatures, respectively.
Given data:
- Initial temperature, [tex]\( T_1 = 200^{\circ} C \)[/tex]
- Final temperature, [tex]\( T_2 = -20^{\circ} C \)[/tex]
- Initial volume, [tex]\( V_1 = 972.70 \text{ mL} \)[/tex]
First, we need to convert the temperatures from Celsius to Kelvin. The conversion formula is:
[tex]\[ T(K) = T(^{\circ} C) + 273.15 \][/tex]
Calculating the initial and final temperatures in Kelvin:
- Initial temperature: [tex]\( T_1 = 200 + 273.15 = 473.15 \text{ K} \)[/tex]
- Final temperature: [tex]\( T_2 = -20 + 273.15 = 253.15 \text{ K} \)[/tex]
Now we can use Charles's Law to find the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]
Substituting in the known values:
[tex]\[ V_2 = 972.70 \text{ mL} \times \frac{253.15 \text{ K}}{473.15 \text{ K}} \][/tex]
After calculating, we get:
[tex]\[ V_2 \approx 520.42 \text{ mL} \][/tex]
Therefore, the volume of the chlorine gas at [tex]\(-20^{\circ} C\)[/tex] will be approximately [tex]\(520.42 \text{ mL}\)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.