IDNLearn.com makes it easy to find accurate answers to your questions. Join our community to receive prompt and reliable responses to your questions from experienced professionals.
Sagot :
Certainly! Let's solve the given system of equations using Cramer's rule step by step.
The system of linear equations is:
[tex]\[ \begin{aligned} I_1 - 2I_2 + I_3 &= -2 \quad \text{(1)} \\ -I_1 + I_2 &= 1 \quad \text{(2)} \\ I_2 + I_3 &= 2 \quad \text{(3)} \end{aligned} \][/tex]
### Step 1: Express the system of equations in matrix form
The given equations can be written in matrix form as [tex]\( AX = B \)[/tex], where [tex]\( A \)[/tex] is the matrix of coefficients, [tex]\( X \)[/tex] is the column matrix of variables, and [tex]\( B \)[/tex] is the matrix of constants.
[tex]\[ A = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix}, \quad B = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} \][/tex]
Using Cramer's rule, we need to find the determinant of the coefficient matrix [tex]\( A \)[/tex] and the determinants of matrices [tex]\( A_1, A_2, A_3 \)[/tex] which are obtained by replacing one column of [tex]\( A \)[/tex] with the matrix [tex]\( B \)[/tex].
### Step 2: Calculate the determinant of matrix [tex]\( A \)[/tex]
[tex]\[ A = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \][/tex]
The determinant [tex]\( \text{det}(A) \)[/tex] of matrix [tex]\( A \)[/tex] is computed as:
[tex]\[ \text{det}(A) = 1 \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - (-2) \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} \][/tex]
[tex]\[ = 1 (1 \cdot 1 - 0 \cdot 1) + 2 (-1 \cdot 1 - 0 \cdot 0) + 1 (-1 \cdot 1 - 1 \cdot 0) = 1 (1) + 2 (-1) + 1 (-1) = 1 - 2 - 1 = -2 \][/tex]
So, [tex]\(\text{det}(A) = -2\)[/tex].
### Step 3: Calculate the determinants of matrices [tex]\( A_1, A_2, A_3 \)[/tex]
#### Matrix [tex]\( A_1 \)[/tex]
Replace the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_1 = \begin{pmatrix} -2 & -2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \][/tex]
The determinant [tex]\( \text{det}(A_1) \)[/tex] is given by:
[tex]\[ \text{det}(A_1) = -2 \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - (-2) \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \][/tex]
[tex]\[ = -2 (1 \cdot 1 - 0 \cdot 1) + 2 (1 \cdot 1 - 0 \cdot 2) + 1 (1 \cdot 1 - 1 \cdot 2) = -2 (1) + 2 (1) + 1 (-1) = -2 + 2 - 1 = -1 \][/tex]
So, [tex]\( \text{det}(A_1) = -1 \)[/tex].
#### Matrix [tex]\( A_2 \)[/tex]
Replace the second column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_2 = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \][/tex]
The determinant [tex]\( \text{det}(A_2) \)[/tex] is:
[tex]\[ \text{det}(A_2) = 1 \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} - (-2) \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix} \][/tex]
[tex]\[ = 1 (1 \cdot 1 - 0 \cdot 2) + 2 (-1 \cdot 1 - 0 \cdot 0) + 1 (-1 \cdot 2 - 1 \cdot 0) = 1 (1) + 2 (-1) + 1 (-2) = 1 - 2 - 2 = -3 \][/tex]
So, [tex]\( \text{det}(A_2) = -3 \)[/tex].
#### Matrix [tex]\( A_3 \)[/tex]
Replace the third column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_3 = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \][/tex]
The determinant [tex]\( \text{det}(A_3) \)[/tex] is:
[tex]\[ \text{det}(A_3) = 1 \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} - (-2) \begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix} + (-2) \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} \][/tex]
[tex]\[ = 1 (1 \cdot 2 - 1 \cdot 1) + 2 (-1 \cdot 2 - 0 \cdot 1) - 2 (-1 \cdot 1 - 1 \cdot 0) = 1 (1) + 2 (-1) - 2 (1) = 1 - 2 - 2 = -1 \][/tex]
So, [tex]\( \text{det}(A_3) = -1 \)[/tex].
### Step 4: Apply Cramer's Rule to find [tex]\( I_1, I_2, I_3 \)[/tex]
Cramer's rule states that for a system [tex]\( AX = B \)[/tex],
[tex]\[ I_1 = \frac{\text{det}(A_1)}{\text{det}(A)} \quad I_2 = \frac{\text{det}(A_2)}{\text{det}(A)} \quad I_3 = \frac{\text{det}(A_3)}{\text{det}(A)} \][/tex]
Using the computed determinants:
[tex]\[ I_1 = \frac{-1}{-2} = 0.5 \quad I_2 = \frac{-3}{-2} = 1.5 \quad I_3 = \frac{-1}{-2} = 0.5 \][/tex]
### Conclusion
By applying Cramer's Rule, we find that the currents [tex]\( I_1, I_2, \)[/tex] and [tex]\( I_3 \)[/tex] are:
[tex]\[ I_1 = 0.5 \, \text{A} \][/tex]
[tex]\[ I_2 = 1.5 \, \text{A} \][/tex]
[tex]\[ I_3 = 0.5 \, \text{A} \][/tex]
These are the solutions to the given system of equations.
The system of linear equations is:
[tex]\[ \begin{aligned} I_1 - 2I_2 + I_3 &= -2 \quad \text{(1)} \\ -I_1 + I_2 &= 1 \quad \text{(2)} \\ I_2 + I_3 &= 2 \quad \text{(3)} \end{aligned} \][/tex]
### Step 1: Express the system of equations in matrix form
The given equations can be written in matrix form as [tex]\( AX = B \)[/tex], where [tex]\( A \)[/tex] is the matrix of coefficients, [tex]\( X \)[/tex] is the column matrix of variables, and [tex]\( B \)[/tex] is the matrix of constants.
[tex]\[ A = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix}, \quad B = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} \][/tex]
Using Cramer's rule, we need to find the determinant of the coefficient matrix [tex]\( A \)[/tex] and the determinants of matrices [tex]\( A_1, A_2, A_3 \)[/tex] which are obtained by replacing one column of [tex]\( A \)[/tex] with the matrix [tex]\( B \)[/tex].
### Step 2: Calculate the determinant of matrix [tex]\( A \)[/tex]
[tex]\[ A = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \][/tex]
The determinant [tex]\( \text{det}(A) \)[/tex] of matrix [tex]\( A \)[/tex] is computed as:
[tex]\[ \text{det}(A) = 1 \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - (-2) \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} \][/tex]
[tex]\[ = 1 (1 \cdot 1 - 0 \cdot 1) + 2 (-1 \cdot 1 - 0 \cdot 0) + 1 (-1 \cdot 1 - 1 \cdot 0) = 1 (1) + 2 (-1) + 1 (-1) = 1 - 2 - 1 = -2 \][/tex]
So, [tex]\(\text{det}(A) = -2\)[/tex].
### Step 3: Calculate the determinants of matrices [tex]\( A_1, A_2, A_3 \)[/tex]
#### Matrix [tex]\( A_1 \)[/tex]
Replace the first column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_1 = \begin{pmatrix} -2 & -2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \][/tex]
The determinant [tex]\( \text{det}(A_1) \)[/tex] is given by:
[tex]\[ \text{det}(A_1) = -2 \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - (-2) \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \][/tex]
[tex]\[ = -2 (1 \cdot 1 - 0 \cdot 1) + 2 (1 \cdot 1 - 0 \cdot 2) + 1 (1 \cdot 1 - 1 \cdot 2) = -2 (1) + 2 (1) + 1 (-1) = -2 + 2 - 1 = -1 \][/tex]
So, [tex]\( \text{det}(A_1) = -1 \)[/tex].
#### Matrix [tex]\( A_2 \)[/tex]
Replace the second column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_2 = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \][/tex]
The determinant [tex]\( \text{det}(A_2) \)[/tex] is:
[tex]\[ \text{det}(A_2) = 1 \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} - (-2) \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix} \][/tex]
[tex]\[ = 1 (1 \cdot 1 - 0 \cdot 2) + 2 (-1 \cdot 1 - 0 \cdot 0) + 1 (-1 \cdot 2 - 1 \cdot 0) = 1 (1) + 2 (-1) + 1 (-2) = 1 - 2 - 2 = -3 \][/tex]
So, [tex]\( \text{det}(A_2) = -3 \)[/tex].
#### Matrix [tex]\( A_3 \)[/tex]
Replace the third column of [tex]\( A \)[/tex] with [tex]\( B \)[/tex]:
[tex]\[ A_3 = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \][/tex]
The determinant [tex]\( \text{det}(A_3) \)[/tex] is:
[tex]\[ \text{det}(A_3) = 1 \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} - (-2) \begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix} + (-2) \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} \][/tex]
[tex]\[ = 1 (1 \cdot 2 - 1 \cdot 1) + 2 (-1 \cdot 2 - 0 \cdot 1) - 2 (-1 \cdot 1 - 1 \cdot 0) = 1 (1) + 2 (-1) - 2 (1) = 1 - 2 - 2 = -1 \][/tex]
So, [tex]\( \text{det}(A_3) = -1 \)[/tex].
### Step 4: Apply Cramer's Rule to find [tex]\( I_1, I_2, I_3 \)[/tex]
Cramer's rule states that for a system [tex]\( AX = B \)[/tex],
[tex]\[ I_1 = \frac{\text{det}(A_1)}{\text{det}(A)} \quad I_2 = \frac{\text{det}(A_2)}{\text{det}(A)} \quad I_3 = \frac{\text{det}(A_3)}{\text{det}(A)} \][/tex]
Using the computed determinants:
[tex]\[ I_1 = \frac{-1}{-2} = 0.5 \quad I_2 = \frac{-3}{-2} = 1.5 \quad I_3 = \frac{-1}{-2} = 0.5 \][/tex]
### Conclusion
By applying Cramer's Rule, we find that the currents [tex]\( I_1, I_2, \)[/tex] and [tex]\( I_3 \)[/tex] are:
[tex]\[ I_1 = 0.5 \, \text{A} \][/tex]
[tex]\[ I_2 = 1.5 \, \text{A} \][/tex]
[tex]\[ I_3 = 0.5 \, \text{A} \][/tex]
These are the solutions to the given system of equations.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.