Get comprehensive solutions to your problems with IDNLearn.com. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Alright, let's solve the problem step by step using the principles of gravitational force.
### Gravitational Force Formula:
The gravitational force [tex]\( F \)[/tex] between two masses is given by Newton's Law of Universal Gravitation, which states:
[tex]\[ F = G \frac{M_{1} M_{2}}{d^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the masses.
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\)[/tex].
- [tex]\( M_{1} \)[/tex] and [tex]\( M_{2} \)[/tex] are the masses (in this case, [tex]\( M_{1} \)[/tex] is the mass of the moon and [tex]\( M_{2} \)[/tex] is the mass of the satellite).
- [tex]\( d \)[/tex] is the distance between the centers of the two masses.
### Given Data:
- Gravitational force [tex]\( F = 324 \, \text{N} \)[/tex]
- Mass of the moon [tex]\( M_{moon} = 7.3 \times 10^{22} \, \text{kg} \)[/tex]
- Distance [tex]\( d = 2.6 \times 10^6 \, \text{m} \)[/tex]
### Step-by-Step Solution:
1. Rearrange the formula to solve for [tex]\( M_{2} \)[/tex] (mass of the satellite):
[tex]\[ M_{2} = \frac{F d^2}{G M_{1}} \][/tex]
2. Substitute the given values into the equation:
[tex]\[ M_{satellite} = \frac{324 \, \text{N} \times (2.6 \times 10^6 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \times 7.3 \times 10^{22} \, \text{kg}} \][/tex]
3. Calculate each part:
- [tex]\( d^2 = (2.6 \times 10^6 \, \text{m})^2 = 6.76 \times 10^{12} \, \text{m}^2 \)[/tex]
- [tex]\( F d^2 = 324 \, \text{N} \times 6.76 \times 10^{12} \, \text{m}^2 = 2.191824 \times 10^{15} \, \text{N} \, \text{m}^2 \)[/tex]
4. Calculate the denominator:
[tex]\[ G M_{moon} = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \times 7.3 \times 10^{22} \, \text{kg} = 4.871239 \times 10^{12} \, \text{N} \, \text{m}^2 \][/tex]
5. Calculate the mass of the satellite:
[tex]\[ M_{satellite} = \frac{2.191824 \times 10^{15} \, \text{N} \text{m}^2}{4.871239 \times 10^{12} \, \text{N} \text{m}^2 \text{kg}^{-1}} = 449.5345979538361 \, \text{kg} \][/tex]
### Conclusion:
The mass of the satellite is approximately 450 kg.
The closest answer choice to this calculation is:
[tex]\[ \boxed{450 \, \text{kg}} \][/tex]
### Gravitational Force Formula:
The gravitational force [tex]\( F \)[/tex] between two masses is given by Newton's Law of Universal Gravitation, which states:
[tex]\[ F = G \frac{M_{1} M_{2}}{d^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the masses.
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\)[/tex].
- [tex]\( M_{1} \)[/tex] and [tex]\( M_{2} \)[/tex] are the masses (in this case, [tex]\( M_{1} \)[/tex] is the mass of the moon and [tex]\( M_{2} \)[/tex] is the mass of the satellite).
- [tex]\( d \)[/tex] is the distance between the centers of the two masses.
### Given Data:
- Gravitational force [tex]\( F = 324 \, \text{N} \)[/tex]
- Mass of the moon [tex]\( M_{moon} = 7.3 \times 10^{22} \, \text{kg} \)[/tex]
- Distance [tex]\( d = 2.6 \times 10^6 \, \text{m} \)[/tex]
### Step-by-Step Solution:
1. Rearrange the formula to solve for [tex]\( M_{2} \)[/tex] (mass of the satellite):
[tex]\[ M_{2} = \frac{F d^2}{G M_{1}} \][/tex]
2. Substitute the given values into the equation:
[tex]\[ M_{satellite} = \frac{324 \, \text{N} \times (2.6 \times 10^6 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \times 7.3 \times 10^{22} \, \text{kg}} \][/tex]
3. Calculate each part:
- [tex]\( d^2 = (2.6 \times 10^6 \, \text{m})^2 = 6.76 \times 10^{12} \, \text{m}^2 \)[/tex]
- [tex]\( F d^2 = 324 \, \text{N} \times 6.76 \times 10^{12} \, \text{m}^2 = 2.191824 \times 10^{15} \, \text{N} \, \text{m}^2 \)[/tex]
4. Calculate the denominator:
[tex]\[ G M_{moon} = 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \times 7.3 \times 10^{22} \, \text{kg} = 4.871239 \times 10^{12} \, \text{N} \, \text{m}^2 \][/tex]
5. Calculate the mass of the satellite:
[tex]\[ M_{satellite} = \frac{2.191824 \times 10^{15} \, \text{N} \text{m}^2}{4.871239 \times 10^{12} \, \text{N} \text{m}^2 \text{kg}^{-1}} = 449.5345979538361 \, \text{kg} \][/tex]
### Conclusion:
The mass of the satellite is approximately 450 kg.
The closest answer choice to this calculation is:
[tex]\[ \boxed{450 \, \text{kg}} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For precise answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.