Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Let's dive into the problem step-by-step:
### (a) Given the matrix [tex]\(A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}\)[/tex],
(i) Show that [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex], where [tex]\(I\)[/tex] is the identity matrix.
We'll proceed by calculating the following:
1. Calculate [tex]\(A^2\)[/tex]:
[tex]\[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^2 = \begin{pmatrix} 1(-1) + (-1)3) + (2)1 & 1(3) + (-1)1 + (2)1 & 1(3) + (-1)1 + (2)1 \\ 1(-1) + (3)3) + (1)1 & 1(0) + (3)1 + (1)1 & 1(-1) + (3)1 + (1)1 \\ -1(0) + (1)(-) + (1)1 & -1(0) + (1)1 + (1)1 & -1(0) + (1)2 + (1)2 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
2. Calculate [tex]\(A^3\)[/tex]:
[tex]\[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^3 = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} \][/tex]
3. Form the expression [tex]\(A^3 - 5A^2 + 9A - 12I\)[/tex]:
[tex]\[ 5A^2 = 5 \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} \][/tex]
[tex]\[ 9A = 9 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} \][/tex]
[tex]\[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
4. Combine them:
[tex]\[ A^3 - 5A^2 + 9A - 12I = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} - \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} + \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 7 - 20 + 9 - 12 & 6 + 15 - 9 + 0 & 11 - 15 + 18 - 0 \\ 4 - 5 + 9 - 0 & 27 - 45 + 27 - 12 & 19 - 15 + 9 - 0 \\ -7 + 15 - 9 - 0 & 8 - 20 + 9 + 0 & 8 - 20 + 9 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \][/tex]
Therefore, [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex].
(ii) Determine [tex]\(A^{-1}\)[/tex]
From the result in part (i), we have a polynomial in [tex]\(A\)[/tex]:
[tex]\[ A^3 - 5A^2 + 9A - 12I = 0 \][/tex]
Rewriting, we obtain:
[tex]\[ A^3 - 5A^2 + 9A = 12I \][/tex]
Multiplying both sides by [tex]\(A^{-1}\)[/tex]:
[tex]\[ A^2 - 5A + 9I = 12A^{-1} \][/tex]
Thus:
[tex]\[ A^{-1} = \frac{1}{12}(A^2 - 5A + 9I) \][/tex]
Given the previous calculations:
[tex]\[ A^2 = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix}, \quad 5A = \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix}, \quad 9I = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
Adding these together:
[tex]\[ A^2 - 5A + 9I = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 4 - 5 + 9 & -3 + 5 + 0 & 3 - 10 + 0 \\ 1 - 5 + 0 & 9 - 15 + 9 & 3 - 5 + 0 \\ -3 + 5 + 0 & 4 - 5 + 0 & 4 - 5 + 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Finally:
[tex]\[ A^{-1} = \frac{1}{12} \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Breaking it down:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{8}{12} & \frac{2}{12} & \frac{-7}{12} \\ \frac{-4}{12} & \frac{3}{12} & \frac{-2}{12} \\ \frac{2}{12} & \frac{-1}{12} & \frac{8}{12} \end{pmatrix} \][/tex]
Simplified:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{-7}{12} \\ \frac{-1}{6} & \frac{1}{4} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{12} & \frac{2}{3} \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} \approx \begin{pmatrix} 0.1667 & 0.25 & -0.5833 \\ -0.1667 & 0.25 & 0.0833 \\ 0.3333 & 0 & 0.3333 \end{pmatrix} \][/tex]
### (a) Given the matrix [tex]\(A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}\)[/tex],
(i) Show that [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex], where [tex]\(I\)[/tex] is the identity matrix.
We'll proceed by calculating the following:
1. Calculate [tex]\(A^2\)[/tex]:
[tex]\[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^2 = \begin{pmatrix} 1(-1) + (-1)3) + (2)1 & 1(3) + (-1)1 + (2)1 & 1(3) + (-1)1 + (2)1 \\ 1(-1) + (3)3) + (1)1 & 1(0) + (3)1 + (1)1 & 1(-1) + (3)1 + (1)1 \\ -1(0) + (1)(-) + (1)1 & -1(0) + (1)1 + (1)1 & -1(0) + (1)2 + (1)2 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
2. Calculate [tex]\(A^3\)[/tex]:
[tex]\[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^3 = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} \][/tex]
3. Form the expression [tex]\(A^3 - 5A^2 + 9A - 12I\)[/tex]:
[tex]\[ 5A^2 = 5 \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} \][/tex]
[tex]\[ 9A = 9 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} \][/tex]
[tex]\[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
4. Combine them:
[tex]\[ A^3 - 5A^2 + 9A - 12I = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} - \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} + \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 7 - 20 + 9 - 12 & 6 + 15 - 9 + 0 & 11 - 15 + 18 - 0 \\ 4 - 5 + 9 - 0 & 27 - 45 + 27 - 12 & 19 - 15 + 9 - 0 \\ -7 + 15 - 9 - 0 & 8 - 20 + 9 + 0 & 8 - 20 + 9 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \][/tex]
Therefore, [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex].
(ii) Determine [tex]\(A^{-1}\)[/tex]
From the result in part (i), we have a polynomial in [tex]\(A\)[/tex]:
[tex]\[ A^3 - 5A^2 + 9A - 12I = 0 \][/tex]
Rewriting, we obtain:
[tex]\[ A^3 - 5A^2 + 9A = 12I \][/tex]
Multiplying both sides by [tex]\(A^{-1}\)[/tex]:
[tex]\[ A^2 - 5A + 9I = 12A^{-1} \][/tex]
Thus:
[tex]\[ A^{-1} = \frac{1}{12}(A^2 - 5A + 9I) \][/tex]
Given the previous calculations:
[tex]\[ A^2 = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix}, \quad 5A = \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix}, \quad 9I = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
Adding these together:
[tex]\[ A^2 - 5A + 9I = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 4 - 5 + 9 & -3 + 5 + 0 & 3 - 10 + 0 \\ 1 - 5 + 0 & 9 - 15 + 9 & 3 - 5 + 0 \\ -3 + 5 + 0 & 4 - 5 + 0 & 4 - 5 + 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Finally:
[tex]\[ A^{-1} = \frac{1}{12} \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Breaking it down:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{8}{12} & \frac{2}{12} & \frac{-7}{12} \\ \frac{-4}{12} & \frac{3}{12} & \frac{-2}{12} \\ \frac{2}{12} & \frac{-1}{12} & \frac{8}{12} \end{pmatrix} \][/tex]
Simplified:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{-7}{12} \\ \frac{-1}{6} & \frac{1}{4} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{12} & \frac{2}{3} \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} \approx \begin{pmatrix} 0.1667 & 0.25 & -0.5833 \\ -0.1667 & 0.25 & 0.0833 \\ 0.3333 & 0 & 0.3333 \end{pmatrix} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for trusting IDNLearn.com with your questions. Visit us again for clear, concise, and accurate answers.