From science to arts, IDNLearn.com has the answers to all your questions. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.
Sagot :
Let's dive into the problem step-by-step:
### (a) Given the matrix [tex]\(A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}\)[/tex],
(i) Show that [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex], where [tex]\(I\)[/tex] is the identity matrix.
We'll proceed by calculating the following:
1. Calculate [tex]\(A^2\)[/tex]:
[tex]\[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^2 = \begin{pmatrix} 1(-1) + (-1)3) + (2)1 & 1(3) + (-1)1 + (2)1 & 1(3) + (-1)1 + (2)1 \\ 1(-1) + (3)3) + (1)1 & 1(0) + (3)1 + (1)1 & 1(-1) + (3)1 + (1)1 \\ -1(0) + (1)(-) + (1)1 & -1(0) + (1)1 + (1)1 & -1(0) + (1)2 + (1)2 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
2. Calculate [tex]\(A^3\)[/tex]:
[tex]\[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^3 = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} \][/tex]
3. Form the expression [tex]\(A^3 - 5A^2 + 9A - 12I\)[/tex]:
[tex]\[ 5A^2 = 5 \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} \][/tex]
[tex]\[ 9A = 9 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} \][/tex]
[tex]\[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
4. Combine them:
[tex]\[ A^3 - 5A^2 + 9A - 12I = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} - \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} + \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 7 - 20 + 9 - 12 & 6 + 15 - 9 + 0 & 11 - 15 + 18 - 0 \\ 4 - 5 + 9 - 0 & 27 - 45 + 27 - 12 & 19 - 15 + 9 - 0 \\ -7 + 15 - 9 - 0 & 8 - 20 + 9 + 0 & 8 - 20 + 9 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \][/tex]
Therefore, [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex].
(ii) Determine [tex]\(A^{-1}\)[/tex]
From the result in part (i), we have a polynomial in [tex]\(A\)[/tex]:
[tex]\[ A^3 - 5A^2 + 9A - 12I = 0 \][/tex]
Rewriting, we obtain:
[tex]\[ A^3 - 5A^2 + 9A = 12I \][/tex]
Multiplying both sides by [tex]\(A^{-1}\)[/tex]:
[tex]\[ A^2 - 5A + 9I = 12A^{-1} \][/tex]
Thus:
[tex]\[ A^{-1} = \frac{1}{12}(A^2 - 5A + 9I) \][/tex]
Given the previous calculations:
[tex]\[ A^2 = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix}, \quad 5A = \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix}, \quad 9I = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
Adding these together:
[tex]\[ A^2 - 5A + 9I = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 4 - 5 + 9 & -3 + 5 + 0 & 3 - 10 + 0 \\ 1 - 5 + 0 & 9 - 15 + 9 & 3 - 5 + 0 \\ -3 + 5 + 0 & 4 - 5 + 0 & 4 - 5 + 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Finally:
[tex]\[ A^{-1} = \frac{1}{12} \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Breaking it down:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{8}{12} & \frac{2}{12} & \frac{-7}{12} \\ \frac{-4}{12} & \frac{3}{12} & \frac{-2}{12} \\ \frac{2}{12} & \frac{-1}{12} & \frac{8}{12} \end{pmatrix} \][/tex]
Simplified:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{-7}{12} \\ \frac{-1}{6} & \frac{1}{4} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{12} & \frac{2}{3} \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} \approx \begin{pmatrix} 0.1667 & 0.25 & -0.5833 \\ -0.1667 & 0.25 & 0.0833 \\ 0.3333 & 0 & 0.3333 \end{pmatrix} \][/tex]
### (a) Given the matrix [tex]\(A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}\)[/tex],
(i) Show that [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex], where [tex]\(I\)[/tex] is the identity matrix.
We'll proceed by calculating the following:
1. Calculate [tex]\(A^2\)[/tex]:
[tex]\[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^2 = \begin{pmatrix} 1(-1) + (-1)3) + (2)1 & 1(3) + (-1)1 + (2)1 & 1(3) + (-1)1 + (2)1 \\ 1(-1) + (3)3) + (1)1 & 1(0) + (3)1 + (1)1 & 1(-1) + (3)1 + (1)1 \\ -1(0) + (1)(-) + (1)1 & -1(0) + (1)1 + (1)1 & -1(0) + (1)2 + (1)2 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
2. Calculate [tex]\(A^3\)[/tex]:
[tex]\[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^3 = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} \][/tex]
3. Form the expression [tex]\(A^3 - 5A^2 + 9A - 12I\)[/tex]:
[tex]\[ 5A^2 = 5 \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} \][/tex]
[tex]\[ 9A = 9 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} \][/tex]
[tex]\[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
4. Combine them:
[tex]\[ A^3 - 5A^2 + 9A - 12I = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} - \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} + \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 7 - 20 + 9 - 12 & 6 + 15 - 9 + 0 & 11 - 15 + 18 - 0 \\ 4 - 5 + 9 - 0 & 27 - 45 + 27 - 12 & 19 - 15 + 9 - 0 \\ -7 + 15 - 9 - 0 & 8 - 20 + 9 + 0 & 8 - 20 + 9 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \][/tex]
Therefore, [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex].
(ii) Determine [tex]\(A^{-1}\)[/tex]
From the result in part (i), we have a polynomial in [tex]\(A\)[/tex]:
[tex]\[ A^3 - 5A^2 + 9A - 12I = 0 \][/tex]
Rewriting, we obtain:
[tex]\[ A^3 - 5A^2 + 9A = 12I \][/tex]
Multiplying both sides by [tex]\(A^{-1}\)[/tex]:
[tex]\[ A^2 - 5A + 9I = 12A^{-1} \][/tex]
Thus:
[tex]\[ A^{-1} = \frac{1}{12}(A^2 - 5A + 9I) \][/tex]
Given the previous calculations:
[tex]\[ A^2 = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix}, \quad 5A = \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix}, \quad 9I = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
Adding these together:
[tex]\[ A^2 - 5A + 9I = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 4 - 5 + 9 & -3 + 5 + 0 & 3 - 10 + 0 \\ 1 - 5 + 0 & 9 - 15 + 9 & 3 - 5 + 0 \\ -3 + 5 + 0 & 4 - 5 + 0 & 4 - 5 + 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Finally:
[tex]\[ A^{-1} = \frac{1}{12} \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Breaking it down:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{8}{12} & \frac{2}{12} & \frac{-7}{12} \\ \frac{-4}{12} & \frac{3}{12} & \frac{-2}{12} \\ \frac{2}{12} & \frac{-1}{12} & \frac{8}{12} \end{pmatrix} \][/tex]
Simplified:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{-7}{12} \\ \frac{-1}{6} & \frac{1}{4} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{12} & \frac{2}{3} \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} \approx \begin{pmatrix} 0.1667 & 0.25 & -0.5833 \\ -0.1667 & 0.25 & 0.0833 \\ 0.3333 & 0 & 0.3333 \end{pmatrix} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.