IDNLearn.com: Your trusted platform for finding reliable answers. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
Let's dive into the problem step-by-step:
### (a) Given the matrix [tex]\(A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}\)[/tex],
(i) Show that [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex], where [tex]\(I\)[/tex] is the identity matrix.
We'll proceed by calculating the following:
1. Calculate [tex]\(A^2\)[/tex]:
[tex]\[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^2 = \begin{pmatrix} 1(-1) + (-1)3) + (2)1 & 1(3) + (-1)1 + (2)1 & 1(3) + (-1)1 + (2)1 \\ 1(-1) + (3)3) + (1)1 & 1(0) + (3)1 + (1)1 & 1(-1) + (3)1 + (1)1 \\ -1(0) + (1)(-) + (1)1 & -1(0) + (1)1 + (1)1 & -1(0) + (1)2 + (1)2 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
2. Calculate [tex]\(A^3\)[/tex]:
[tex]\[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^3 = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} \][/tex]
3. Form the expression [tex]\(A^3 - 5A^2 + 9A - 12I\)[/tex]:
[tex]\[ 5A^2 = 5 \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} \][/tex]
[tex]\[ 9A = 9 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} \][/tex]
[tex]\[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
4. Combine them:
[tex]\[ A^3 - 5A^2 + 9A - 12I = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} - \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} + \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 7 - 20 + 9 - 12 & 6 + 15 - 9 + 0 & 11 - 15 + 18 - 0 \\ 4 - 5 + 9 - 0 & 27 - 45 + 27 - 12 & 19 - 15 + 9 - 0 \\ -7 + 15 - 9 - 0 & 8 - 20 + 9 + 0 & 8 - 20 + 9 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \][/tex]
Therefore, [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex].
(ii) Determine [tex]\(A^{-1}\)[/tex]
From the result in part (i), we have a polynomial in [tex]\(A\)[/tex]:
[tex]\[ A^3 - 5A^2 + 9A - 12I = 0 \][/tex]
Rewriting, we obtain:
[tex]\[ A^3 - 5A^2 + 9A = 12I \][/tex]
Multiplying both sides by [tex]\(A^{-1}\)[/tex]:
[tex]\[ A^2 - 5A + 9I = 12A^{-1} \][/tex]
Thus:
[tex]\[ A^{-1} = \frac{1}{12}(A^2 - 5A + 9I) \][/tex]
Given the previous calculations:
[tex]\[ A^2 = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix}, \quad 5A = \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix}, \quad 9I = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
Adding these together:
[tex]\[ A^2 - 5A + 9I = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 4 - 5 + 9 & -3 + 5 + 0 & 3 - 10 + 0 \\ 1 - 5 + 0 & 9 - 15 + 9 & 3 - 5 + 0 \\ -3 + 5 + 0 & 4 - 5 + 0 & 4 - 5 + 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Finally:
[tex]\[ A^{-1} = \frac{1}{12} \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Breaking it down:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{8}{12} & \frac{2}{12} & \frac{-7}{12} \\ \frac{-4}{12} & \frac{3}{12} & \frac{-2}{12} \\ \frac{2}{12} & \frac{-1}{12} & \frac{8}{12} \end{pmatrix} \][/tex]
Simplified:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{-7}{12} \\ \frac{-1}{6} & \frac{1}{4} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{12} & \frac{2}{3} \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} \approx \begin{pmatrix} 0.1667 & 0.25 & -0.5833 \\ -0.1667 & 0.25 & 0.0833 \\ 0.3333 & 0 & 0.3333 \end{pmatrix} \][/tex]
### (a) Given the matrix [tex]\(A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}\)[/tex],
(i) Show that [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex], where [tex]\(I\)[/tex] is the identity matrix.
We'll proceed by calculating the following:
1. Calculate [tex]\(A^2\)[/tex]:
[tex]\[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^2 = \begin{pmatrix} 1(-1) + (-1)3) + (2)1 & 1(3) + (-1)1 + (2)1 & 1(3) + (-1)1 + (2)1 \\ 1(-1) + (3)3) + (1)1 & 1(0) + (3)1 + (1)1 & 1(-1) + (3)1 + (1)1 \\ -1(0) + (1)(-) + (1)1 & -1(0) + (1)1 + (1)1 & -1(0) + (1)2 + (1)2 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
2. Calculate [tex]\(A^3\)[/tex]:
[tex]\[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^3 = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} \][/tex]
3. Form the expression [tex]\(A^3 - 5A^2 + 9A - 12I\)[/tex]:
[tex]\[ 5A^2 = 5 \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} \][/tex]
[tex]\[ 9A = 9 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} \][/tex]
[tex]\[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
4. Combine them:
[tex]\[ A^3 - 5A^2 + 9A - 12I = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} - \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} + \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 7 - 20 + 9 - 12 & 6 + 15 - 9 + 0 & 11 - 15 + 18 - 0 \\ 4 - 5 + 9 - 0 & 27 - 45 + 27 - 12 & 19 - 15 + 9 - 0 \\ -7 + 15 - 9 - 0 & 8 - 20 + 9 + 0 & 8 - 20 + 9 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \][/tex]
Therefore, [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex].
(ii) Determine [tex]\(A^{-1}\)[/tex]
From the result in part (i), we have a polynomial in [tex]\(A\)[/tex]:
[tex]\[ A^3 - 5A^2 + 9A - 12I = 0 \][/tex]
Rewriting, we obtain:
[tex]\[ A^3 - 5A^2 + 9A = 12I \][/tex]
Multiplying both sides by [tex]\(A^{-1}\)[/tex]:
[tex]\[ A^2 - 5A + 9I = 12A^{-1} \][/tex]
Thus:
[tex]\[ A^{-1} = \frac{1}{12}(A^2 - 5A + 9I) \][/tex]
Given the previous calculations:
[tex]\[ A^2 = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix}, \quad 5A = \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix}, \quad 9I = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
Adding these together:
[tex]\[ A^2 - 5A + 9I = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 4 - 5 + 9 & -3 + 5 + 0 & 3 - 10 + 0 \\ 1 - 5 + 0 & 9 - 15 + 9 & 3 - 5 + 0 \\ -3 + 5 + 0 & 4 - 5 + 0 & 4 - 5 + 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Finally:
[tex]\[ A^{-1} = \frac{1}{12} \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Breaking it down:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{8}{12} & \frac{2}{12} & \frac{-7}{12} \\ \frac{-4}{12} & \frac{3}{12} & \frac{-2}{12} \\ \frac{2}{12} & \frac{-1}{12} & \frac{8}{12} \end{pmatrix} \][/tex]
Simplified:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{-7}{12} \\ \frac{-1}{6} & \frac{1}{4} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{12} & \frac{2}{3} \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} \approx \begin{pmatrix} 0.1667 & 0.25 & -0.5833 \\ -0.1667 & 0.25 & 0.0833 \\ 0.3333 & 0 & 0.3333 \end{pmatrix} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.