IDNLearn.com: Your trusted source for accurate and reliable answers. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
Let's dive into the problem step-by-step:
### (a) Given the matrix [tex]\(A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}\)[/tex],
(i) Show that [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex], where [tex]\(I\)[/tex] is the identity matrix.
We'll proceed by calculating the following:
1. Calculate [tex]\(A^2\)[/tex]:
[tex]\[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^2 = \begin{pmatrix} 1(-1) + (-1)3) + (2)1 & 1(3) + (-1)1 + (2)1 & 1(3) + (-1)1 + (2)1 \\ 1(-1) + (3)3) + (1)1 & 1(0) + (3)1 + (1)1 & 1(-1) + (3)1 + (1)1 \\ -1(0) + (1)(-) + (1)1 & -1(0) + (1)1 + (1)1 & -1(0) + (1)2 + (1)2 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
2. Calculate [tex]\(A^3\)[/tex]:
[tex]\[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^3 = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} \][/tex]
3. Form the expression [tex]\(A^3 - 5A^2 + 9A - 12I\)[/tex]:
[tex]\[ 5A^2 = 5 \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} \][/tex]
[tex]\[ 9A = 9 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} \][/tex]
[tex]\[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
4. Combine them:
[tex]\[ A^3 - 5A^2 + 9A - 12I = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} - \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} + \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 7 - 20 + 9 - 12 & 6 + 15 - 9 + 0 & 11 - 15 + 18 - 0 \\ 4 - 5 + 9 - 0 & 27 - 45 + 27 - 12 & 19 - 15 + 9 - 0 \\ -7 + 15 - 9 - 0 & 8 - 20 + 9 + 0 & 8 - 20 + 9 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \][/tex]
Therefore, [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex].
(ii) Determine [tex]\(A^{-1}\)[/tex]
From the result in part (i), we have a polynomial in [tex]\(A\)[/tex]:
[tex]\[ A^3 - 5A^2 + 9A - 12I = 0 \][/tex]
Rewriting, we obtain:
[tex]\[ A^3 - 5A^2 + 9A = 12I \][/tex]
Multiplying both sides by [tex]\(A^{-1}\)[/tex]:
[tex]\[ A^2 - 5A + 9I = 12A^{-1} \][/tex]
Thus:
[tex]\[ A^{-1} = \frac{1}{12}(A^2 - 5A + 9I) \][/tex]
Given the previous calculations:
[tex]\[ A^2 = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix}, \quad 5A = \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix}, \quad 9I = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
Adding these together:
[tex]\[ A^2 - 5A + 9I = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 4 - 5 + 9 & -3 + 5 + 0 & 3 - 10 + 0 \\ 1 - 5 + 0 & 9 - 15 + 9 & 3 - 5 + 0 \\ -3 + 5 + 0 & 4 - 5 + 0 & 4 - 5 + 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Finally:
[tex]\[ A^{-1} = \frac{1}{12} \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Breaking it down:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{8}{12} & \frac{2}{12} & \frac{-7}{12} \\ \frac{-4}{12} & \frac{3}{12} & \frac{-2}{12} \\ \frac{2}{12} & \frac{-1}{12} & \frac{8}{12} \end{pmatrix} \][/tex]
Simplified:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{-7}{12} \\ \frac{-1}{6} & \frac{1}{4} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{12} & \frac{2}{3} \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} \approx \begin{pmatrix} 0.1667 & 0.25 & -0.5833 \\ -0.1667 & 0.25 & 0.0833 \\ 0.3333 & 0 & 0.3333 \end{pmatrix} \][/tex]
### (a) Given the matrix [tex]\(A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}\)[/tex],
(i) Show that [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex], where [tex]\(I\)[/tex] is the identity matrix.
We'll proceed by calculating the following:
1. Calculate [tex]\(A^2\)[/tex]:
[tex]\[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^2 = \begin{pmatrix} 1(-1) + (-1)3) + (2)1 & 1(3) + (-1)1 + (2)1 & 1(3) + (-1)1 + (2)1 \\ 1(-1) + (3)3) + (1)1 & 1(0) + (3)1 + (1)1 & 1(-1) + (3)1 + (1)1 \\ -1(0) + (1)(-) + (1)1 & -1(0) + (1)1 + (1)1 & -1(0) + (1)2 + (1)2 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
2. Calculate [tex]\(A^3\)[/tex]:
[tex]\[ A^3 = A \cdot A^2 = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} \][/tex]
After performing the matrix multiplication:
[tex]\[ A^3 = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} \][/tex]
3. Form the expression [tex]\(A^3 - 5A^2 + 9A - 12I\)[/tex]:
[tex]\[ 5A^2 = 5 \cdot \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} = \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} \][/tex]
[tex]\[ 9A = 9 \cdot \begin{pmatrix} 1 & -1 & 2 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} \][/tex]
[tex]\[ 12I = 12 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
4. Combine them:
[tex]\[ A^3 - 5A^2 + 9A - 12I = \begin{pmatrix} 7 & 6 & 11 \\ 4 & 27 & 19 \\ -7 & 8 & 8 \end{pmatrix} - \begin{pmatrix} 20 & -15 & 15 \\ 5 & 45 & 15 \\ -15 & 20 & 20 \end{pmatrix} + \begin{pmatrix} 9 & -9 & 18 \\ 9 & 27 & 9 \\ -9 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 12 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 12 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 7 - 20 + 9 - 12 & 6 + 15 - 9 + 0 & 11 - 15 + 18 - 0 \\ 4 - 5 + 9 - 0 & 27 - 45 + 27 - 12 & 19 - 15 + 9 - 0 \\ -7 + 15 - 9 - 0 & 8 - 20 + 9 + 0 & 8 - 20 + 9 - 12 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \][/tex]
Therefore, [tex]\(A^3 - 5A^2 + 9A - 12I = 0\)[/tex].
(ii) Determine [tex]\(A^{-1}\)[/tex]
From the result in part (i), we have a polynomial in [tex]\(A\)[/tex]:
[tex]\[ A^3 - 5A^2 + 9A - 12I = 0 \][/tex]
Rewriting, we obtain:
[tex]\[ A^3 - 5A^2 + 9A = 12I \][/tex]
Multiplying both sides by [tex]\(A^{-1}\)[/tex]:
[tex]\[ A^2 - 5A + 9I = 12A^{-1} \][/tex]
Thus:
[tex]\[ A^{-1} = \frac{1}{12}(A^2 - 5A + 9I) \][/tex]
Given the previous calculations:
[tex]\[ A^2 = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix}, \quad 5A = \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix}, \quad 9I = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
Adding these together:
[tex]\[ A^2 - 5A + 9I = \begin{pmatrix} 4 & -3 & 3 \\ 1 & 9 & 3 \\ -3 & 4 & 4 \end{pmatrix} - \begin{pmatrix} 5 & -5 & 10 \\ 5 & 15 & 5 \\ -5 & 5 & 5 \end{pmatrix} + \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 4 - 5 + 9 & -3 + 5 + 0 & 3 - 10 + 0 \\ 1 - 5 + 0 & 9 - 15 + 9 & 3 - 5 + 0 \\ -3 + 5 + 0 & 4 - 5 + 0 & 4 - 5 + 9 \end{pmatrix} \][/tex]
[tex]\[ = \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Finally:
[tex]\[ A^{-1} = \frac{1}{12} \begin{pmatrix} 8 & 2 & -7 \\ -4 & 3 & -2 \\ 2 & -1 & 8 \end{pmatrix} \][/tex]
Breaking it down:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{8}{12} & \frac{2}{12} & \frac{-7}{12} \\ \frac{-4}{12} & \frac{3}{12} & \frac{-2}{12} \\ \frac{2}{12} & \frac{-1}{12} & \frac{8}{12} \end{pmatrix} \][/tex]
Simplified:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{6} & \frac{-7}{12} \\ \frac{-1}{6} & \frac{1}{4} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{12} & \frac{2}{3} \end{pmatrix} \][/tex]
So, the inverse of matrix [tex]\(A\)[/tex] is:
[tex]\[ A^{-1} \approx \begin{pmatrix} 0.1667 & 0.25 & -0.5833 \\ -0.1667 & 0.25 & 0.0833 \\ 0.3333 & 0 & 0.3333 \end{pmatrix} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.