Get the answers you need from a community of experts on IDNLearn.com. Our experts provide timely, comprehensive responses to ensure you have the information you need.
Sagot :
Sure! Let's break down the steps needed to solve this problem. We are given the following values:
- Gravitational force ([tex]\( F \)[/tex]) = [tex]\( 2.58 \times 10^3 \)[/tex] N
- Mass of Venus ([tex]\( m_1 \)[/tex]) = [tex]\( 4.87 \times 10^{24} \)[/tex] kg
- Mass of the probe ([tex]\( m_2 \)[/tex]) = 655 kg
- Gravitational constant ([tex]\( G \)[/tex]) = [tex]\( 6.67 \times 10^{-11} \)[/tex] N [tex]\( m^2 / kg^2 \)[/tex]
We need to find the distance [tex]\( r \)[/tex] between the probe and the center of Venus.
The formula for gravitational force is:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Rearranging the formula to solve for [tex]\( r \)[/tex], we get:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Taking the square root of both sides, we obtain:
[tex]\[ r = \sqrt{G \frac{m_1 m_2}{F}} \][/tex]
Next, we substitute the given values into this formula:
[tex]\[ r = \sqrt{(6.67 \times 10^{-11}) \frac{(4.87 \times 10^{24}) (655)}{(2.58 \times 10^3)}} \][/tex]
Upon calculating the expression inside the square root and then taking the square root, the distance [tex]\( r \)[/tex] between the probe and the center of Venus is found to be approximately:
[tex]\[ r \approx 9,081,094.489750834 \text{ meters} \][/tex]
To convert this distance into [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r_{million\_meters} = \frac{r}{10^6} \approx \frac{9,081,094.489750834}{10^6} \approx 9.081 \text{ } 10^6 \text{ meters} \][/tex]
Therefore, to three significant digits, the probe is approximately:
[tex]\[ 9.08 \times 10^6 \text{ meters} \][/tex]
from the center of Venus.
- Gravitational force ([tex]\( F \)[/tex]) = [tex]\( 2.58 \times 10^3 \)[/tex] N
- Mass of Venus ([tex]\( m_1 \)[/tex]) = [tex]\( 4.87 \times 10^{24} \)[/tex] kg
- Mass of the probe ([tex]\( m_2 \)[/tex]) = 655 kg
- Gravitational constant ([tex]\( G \)[/tex]) = [tex]\( 6.67 \times 10^{-11} \)[/tex] N [tex]\( m^2 / kg^2 \)[/tex]
We need to find the distance [tex]\( r \)[/tex] between the probe and the center of Venus.
The formula for gravitational force is:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Rearranging the formula to solve for [tex]\( r \)[/tex], we get:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Taking the square root of both sides, we obtain:
[tex]\[ r = \sqrt{G \frac{m_1 m_2}{F}} \][/tex]
Next, we substitute the given values into this formula:
[tex]\[ r = \sqrt{(6.67 \times 10^{-11}) \frac{(4.87 \times 10^{24}) (655)}{(2.58 \times 10^3)}} \][/tex]
Upon calculating the expression inside the square root and then taking the square root, the distance [tex]\( r \)[/tex] between the probe and the center of Venus is found to be approximately:
[tex]\[ r \approx 9,081,094.489750834 \text{ meters} \][/tex]
To convert this distance into [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r_{million\_meters} = \frac{r}{10^6} \approx \frac{9,081,094.489750834}{10^6} \approx 9.081 \text{ } 10^6 \text{ meters} \][/tex]
Therefore, to three significant digits, the probe is approximately:
[tex]\[ 9.08 \times 10^6 \text{ meters} \][/tex]
from the center of Venus.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.