Connect with a community of experts and enthusiasts on IDNLearn.com. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
Sure! Let's break down the steps needed to solve this problem. We are given the following values:
- Gravitational force ([tex]\( F \)[/tex]) = [tex]\( 2.58 \times 10^3 \)[/tex] N
- Mass of Venus ([tex]\( m_1 \)[/tex]) = [tex]\( 4.87 \times 10^{24} \)[/tex] kg
- Mass of the probe ([tex]\( m_2 \)[/tex]) = 655 kg
- Gravitational constant ([tex]\( G \)[/tex]) = [tex]\( 6.67 \times 10^{-11} \)[/tex] N [tex]\( m^2 / kg^2 \)[/tex]
We need to find the distance [tex]\( r \)[/tex] between the probe and the center of Venus.
The formula for gravitational force is:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Rearranging the formula to solve for [tex]\( r \)[/tex], we get:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Taking the square root of both sides, we obtain:
[tex]\[ r = \sqrt{G \frac{m_1 m_2}{F}} \][/tex]
Next, we substitute the given values into this formula:
[tex]\[ r = \sqrt{(6.67 \times 10^{-11}) \frac{(4.87 \times 10^{24}) (655)}{(2.58 \times 10^3)}} \][/tex]
Upon calculating the expression inside the square root and then taking the square root, the distance [tex]\( r \)[/tex] between the probe and the center of Venus is found to be approximately:
[tex]\[ r \approx 9,081,094.489750834 \text{ meters} \][/tex]
To convert this distance into [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r_{million\_meters} = \frac{r}{10^6} \approx \frac{9,081,094.489750834}{10^6} \approx 9.081 \text{ } 10^6 \text{ meters} \][/tex]
Therefore, to three significant digits, the probe is approximately:
[tex]\[ 9.08 \times 10^6 \text{ meters} \][/tex]
from the center of Venus.
- Gravitational force ([tex]\( F \)[/tex]) = [tex]\( 2.58 \times 10^3 \)[/tex] N
- Mass of Venus ([tex]\( m_1 \)[/tex]) = [tex]\( 4.87 \times 10^{24} \)[/tex] kg
- Mass of the probe ([tex]\( m_2 \)[/tex]) = 655 kg
- Gravitational constant ([tex]\( G \)[/tex]) = [tex]\( 6.67 \times 10^{-11} \)[/tex] N [tex]\( m^2 / kg^2 \)[/tex]
We need to find the distance [tex]\( r \)[/tex] between the probe and the center of Venus.
The formula for gravitational force is:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Rearranging the formula to solve for [tex]\( r \)[/tex], we get:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Taking the square root of both sides, we obtain:
[tex]\[ r = \sqrt{G \frac{m_1 m_2}{F}} \][/tex]
Next, we substitute the given values into this formula:
[tex]\[ r = \sqrt{(6.67 \times 10^{-11}) \frac{(4.87 \times 10^{24}) (655)}{(2.58 \times 10^3)}} \][/tex]
Upon calculating the expression inside the square root and then taking the square root, the distance [tex]\( r \)[/tex] between the probe and the center of Venus is found to be approximately:
[tex]\[ r \approx 9,081,094.489750834 \text{ meters} \][/tex]
To convert this distance into [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r_{million\_meters} = \frac{r}{10^6} \approx \frac{9,081,094.489750834}{10^6} \approx 9.081 \text{ } 10^6 \text{ meters} \][/tex]
Therefore, to three significant digits, the probe is approximately:
[tex]\[ 9.08 \times 10^6 \text{ meters} \][/tex]
from the center of Venus.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.