Connect with a community of experts and enthusiasts on IDNLearn.com. Our platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
Let's solve the problem step by step:
### Part (i): Determine [tex]\( \lambda \)[/tex] and [tex]\( Q^{-1} \)[/tex]
Given the matrix [tex]\( QQ^T = \lambda I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix, we need to determine:
1. [tex]\( \lambda \)[/tex]
2. [tex]\( Q^{-1} \)[/tex]
#### Determining [tex]\( \lambda \)[/tex]
To find [tex]\( \lambda \)[/tex], we can see that [tex]\( QQ^T \)[/tex] is a product of the matrices [tex]\( Q \)[/tex] and [tex]\( Q^T \)[/tex]. This implies that [tex]\( QQ^T \)[/tex] is a symmetric matrix.
The eigenvalues of the matrix [tex]\( QQ^T \)[/tex] will help us find [tex]\( \lambda \)[/tex]. Since [tex]\( \lambda I \)[/tex] is a diagonal matrix with [tex]\( \lambda \)[/tex] as its repeated value, the eigenvalues of [tex]\( QQ^T \)[/tex] will give us [tex]\( \lambda \)[/tex].
Given the numerical solution, we have:
[tex]\[ \lambda = (8.999999999999993 + 15.588457268119885j) \][/tex]
#### Determining [tex]\( Q^{-1} \)[/tex]
[tex]\( Q \)[/tex] can be represented by the matrix of eigenvectors of [tex]\( QQ^T \)[/tex], and the inverse of [tex]\( Q \)[/tex] can be found by inverting the eigenvector matrix.
From the numerical solution, we have:
[tex]\[ Q^{-1} \approx \begin{pmatrix} -0.57735027 + 2.77555756e-16j & 0.28867513 + 0.5j & 0.28867513 - 0.5j \\ -0.57735027 - 3.05311332e-16j & 0.28867513 - 0.5j & 0.28867513 + 0.5j \\ 0.57735027 + 1.35456610e-17j & 0.57735027 - 1.85037171e-17j & 0.57735027 - 1.85037171e-17j \end{pmatrix} \][/tex]
### Part (ii): Solve the system of equations
Given the system of equations:
[tex]\[ \begin{array}{l} 12I_1 + 12I_2 - 6I_3 = -18 \\ -6I_1 + 12I_2 + 12I_3 = 0 \\ 12I_1 - 6I_2 + 12I_3 = 72 \end{array} \][/tex]
We can represent this system as the matrix equation [tex]\( A\mathbf{I} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{pmatrix} 12 & 12 & -6 \\ -6 & 12 & 12 \\ 12 & -6 & 12 \end{pmatrix} \][/tex]
and
[tex]\[ \mathbf{B} = \begin{pmatrix} -18 \\ 0 \\ 72 \end{pmatrix} \][/tex]
To solve for [tex]\( \mathbf{I} = \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} \)[/tex], we need to solve the equation [tex]\( \mathbf{I} = A^{-1}\mathbf{B} \)[/tex].
From the numerical solution, we have:
[tex]\[ \mathbf{I} \approx \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} \][/tex]
So the solutions for the system of equations are:
[tex]\[ I_1 = 2, \quad I_2 = -2, \quad I_3 = 3 \][/tex]
### Summary
1. [tex]\( \lambda \)[/tex] is approximately [tex]\( (8.999999999999993 + 15.588457268119885j) \)[/tex].
2. [tex]\( Q^{-1} \)[/tex] is:
[tex]\[ \begin{pmatrix} -0.57735027 + 2.77555756e-16j & 0.28867513 + 0.5j & 0.28867513 - 0.5j \\ -0.57735027 - 3.05311332e-16j & 0.28867513 - 0.5j & 0.28867513 + 0.5j \\ 0.57735027 + 1.35456610e-17j & 0.57735027 - 1.85037171e-17j & 0.57735027 - 1.85037171e-17j \end{pmatrix} \][/tex]
3. The solutions for [tex]\( I_1, I_2, \)[/tex] and [tex]\( I_3 \)[/tex] are:
[tex]\[ I_1 \approx 2, \quad I_2 \approx -2, \quad I_3 \approx 3 \][/tex]
This gives the complete solution to the problem.
### Part (i): Determine [tex]\( \lambda \)[/tex] and [tex]\( Q^{-1} \)[/tex]
Given the matrix [tex]\( QQ^T = \lambda I \)[/tex], where [tex]\( I \)[/tex] is the identity matrix, we need to determine:
1. [tex]\( \lambda \)[/tex]
2. [tex]\( Q^{-1} \)[/tex]
#### Determining [tex]\( \lambda \)[/tex]
To find [tex]\( \lambda \)[/tex], we can see that [tex]\( QQ^T \)[/tex] is a product of the matrices [tex]\( Q \)[/tex] and [tex]\( Q^T \)[/tex]. This implies that [tex]\( QQ^T \)[/tex] is a symmetric matrix.
The eigenvalues of the matrix [tex]\( QQ^T \)[/tex] will help us find [tex]\( \lambda \)[/tex]. Since [tex]\( \lambda I \)[/tex] is a diagonal matrix with [tex]\( \lambda \)[/tex] as its repeated value, the eigenvalues of [tex]\( QQ^T \)[/tex] will give us [tex]\( \lambda \)[/tex].
Given the numerical solution, we have:
[tex]\[ \lambda = (8.999999999999993 + 15.588457268119885j) \][/tex]
#### Determining [tex]\( Q^{-1} \)[/tex]
[tex]\( Q \)[/tex] can be represented by the matrix of eigenvectors of [tex]\( QQ^T \)[/tex], and the inverse of [tex]\( Q \)[/tex] can be found by inverting the eigenvector matrix.
From the numerical solution, we have:
[tex]\[ Q^{-1} \approx \begin{pmatrix} -0.57735027 + 2.77555756e-16j & 0.28867513 + 0.5j & 0.28867513 - 0.5j \\ -0.57735027 - 3.05311332e-16j & 0.28867513 - 0.5j & 0.28867513 + 0.5j \\ 0.57735027 + 1.35456610e-17j & 0.57735027 - 1.85037171e-17j & 0.57735027 - 1.85037171e-17j \end{pmatrix} \][/tex]
### Part (ii): Solve the system of equations
Given the system of equations:
[tex]\[ \begin{array}{l} 12I_1 + 12I_2 - 6I_3 = -18 \\ -6I_1 + 12I_2 + 12I_3 = 0 \\ 12I_1 - 6I_2 + 12I_3 = 72 \end{array} \][/tex]
We can represent this system as the matrix equation [tex]\( A\mathbf{I} = \mathbf{B} \)[/tex], where:
[tex]\[ A = \begin{pmatrix} 12 & 12 & -6 \\ -6 & 12 & 12 \\ 12 & -6 & 12 \end{pmatrix} \][/tex]
and
[tex]\[ \mathbf{B} = \begin{pmatrix} -18 \\ 0 \\ 72 \end{pmatrix} \][/tex]
To solve for [tex]\( \mathbf{I} = \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} \)[/tex], we need to solve the equation [tex]\( \mathbf{I} = A^{-1}\mathbf{B} \)[/tex].
From the numerical solution, we have:
[tex]\[ \mathbf{I} \approx \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix} \][/tex]
So the solutions for the system of equations are:
[tex]\[ I_1 = 2, \quad I_2 = -2, \quad I_3 = 3 \][/tex]
### Summary
1. [tex]\( \lambda \)[/tex] is approximately [tex]\( (8.999999999999993 + 15.588457268119885j) \)[/tex].
2. [tex]\( Q^{-1} \)[/tex] is:
[tex]\[ \begin{pmatrix} -0.57735027 + 2.77555756e-16j & 0.28867513 + 0.5j & 0.28867513 - 0.5j \\ -0.57735027 - 3.05311332e-16j & 0.28867513 - 0.5j & 0.28867513 + 0.5j \\ 0.57735027 + 1.35456610e-17j & 0.57735027 - 1.85037171e-17j & 0.57735027 - 1.85037171e-17j \end{pmatrix} \][/tex]
3. The solutions for [tex]\( I_1, I_2, \)[/tex] and [tex]\( I_3 \)[/tex] are:
[tex]\[ I_1 \approx 2, \quad I_2 \approx -2, \quad I_3 \approx 3 \][/tex]
This gives the complete solution to the problem.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.