IDNLearn.com connects you with experts who provide accurate and reliable answers. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.
Sagot :
To find the value of [tex]\( n \)[/tex] for which the sum of the first [tex]\( n \)[/tex] terms of the arithmetic progression (A.P.) [tex]\( -4, 0, 4, 8, \ldots \)[/tex] is equal to the sum of the first [tex]\( n \)[/tex] terms of the arithmetic progression (A.P.) [tex]\( 2, 4, 6, 8, \ldots \)[/tex], let's proceed step-by-step.
### Step 1: Definitions and Formulas
The general formula for the sum of the first [tex]\( n \)[/tex] terms ([tex]\( S_n \)[/tex]) of an arithmetic progression (A.P.) is:
[tex]\[ S_n = \frac{n}{2} \left[ 2a + (n - 1)d \right] \][/tex]
where [tex]\( a \)[/tex] is the first term and [tex]\( d \)[/tex] is the common difference.
### Step 2: Identify Parameters for Each A.P.
First A.P.: [tex]\( -4, 0, 4, 8, \ldots \)[/tex]
- First term ([tex]\( a_1 \)[/tex]) = [tex]\( -4 \)[/tex]
- Common difference ([tex]\( d_1 \)[/tex]) = [tex]\( 0 - (-4) = 4 \)[/tex]
Second A.P.: [tex]\( 2, 4, 6, 8, \ldots \)[/tex]
- First term ([tex]\( a_2 \)[/tex]) = [tex]\( 2 \)[/tex]
- Common difference ([tex]\( d_2 \)[/tex]) = [tex]\( 4 - 2 = 2 \)[/tex]
### Step 3: Sum of the First [tex]\( n \)[/tex] Terms for Each A.P.
Sum of the first [tex]\( n \)[/tex] terms of the first A.P.:
[tex]\[ S_{1,n} = \frac{n}{2} \left[ 2(-4) + (n - 1) \cdot 4 \right] \][/tex]
[tex]\[ S_{1,n} = \frac{n}{2} \left[ -8 + 4n - 4 \right] \][/tex]
[tex]\[ S_{1,n} = \frac{n}{2} \left[ 4n - 12 \right] \][/tex]
[tex]\[ S_{1,n} = \frac{n}{2} \cdot 4(n - 3) \][/tex]
[tex]\[ S_{1,n} = 2n(n - 3) \][/tex]
[tex]\[ S_{1,n} = 2n^2 - 6n \][/tex]
Sum of the first [tex]\( n \)[/tex] terms of the second A.P.:
[tex]\[ S_{2,n} = \frac{n}{2} \left[ 2(2) + (n - 1) \cdot 2 \right] \][/tex]
[tex]\[ S_{2,n} = \frac{n}{2} \left[ 4 + 2n - 2 \right] \][/tex]
[tex]\[ S_{2,n} = \frac{n}{2} \left[ 2n + 2 \right] \][/tex]
[tex]\[ S_{2,n} = \frac{n}{2} \cdot 2(n + 1) \][/tex]
[tex]\[ S_{2,n} = n(n + 1) \][/tex]
[tex]\[ S_{2,n} = n^2 + n \][/tex]
### Step 4: Setting the Sums Equal and Solving for [tex]\( n \)[/tex]
Set [tex]\( S_{1,n} \)[/tex] equal to [tex]\( S_{2,n} \)[/tex]:
[tex]\[ 2n^2 - 6n = n^2 + n \][/tex]
Move all terms to one side to form a quadratic equation:
[tex]\[ 2n^2 - 6n - n^2 - n = 0 \][/tex]
[tex]\[ n^2 - 7n = 0 \][/tex]
Factor out [tex]\( n \)[/tex]:
[tex]\[ n(n - 7) = 0 \][/tex]
Set each factor to zero:
[tex]\[ n = 0 \quad \text{or} \quad n - 7 = 0 \][/tex]
[tex]\[ n = 0 \quad \text{or} \quad n = 7 \][/tex]
### Step 5: Conclusion
The values of [tex]\( n \)[/tex] for which the sums of the first terms of both arithmetic progressions are equal are:
[tex]\[ n = 0 \quad \text{or} \quad n = 7 \][/tex]
Since [tex]\( n = 0 \)[/tex] does not make sense in the context of summing the first [tex]\( n \)[/tex] terms, we discard [tex]\( n = 0 \)[/tex].
Thus, the value of [tex]\( n \)[/tex] is:
[tex]\[ n = 7 \][/tex]
### Step 1: Definitions and Formulas
The general formula for the sum of the first [tex]\( n \)[/tex] terms ([tex]\( S_n \)[/tex]) of an arithmetic progression (A.P.) is:
[tex]\[ S_n = \frac{n}{2} \left[ 2a + (n - 1)d \right] \][/tex]
where [tex]\( a \)[/tex] is the first term and [tex]\( d \)[/tex] is the common difference.
### Step 2: Identify Parameters for Each A.P.
First A.P.: [tex]\( -4, 0, 4, 8, \ldots \)[/tex]
- First term ([tex]\( a_1 \)[/tex]) = [tex]\( -4 \)[/tex]
- Common difference ([tex]\( d_1 \)[/tex]) = [tex]\( 0 - (-4) = 4 \)[/tex]
Second A.P.: [tex]\( 2, 4, 6, 8, \ldots \)[/tex]
- First term ([tex]\( a_2 \)[/tex]) = [tex]\( 2 \)[/tex]
- Common difference ([tex]\( d_2 \)[/tex]) = [tex]\( 4 - 2 = 2 \)[/tex]
### Step 3: Sum of the First [tex]\( n \)[/tex] Terms for Each A.P.
Sum of the first [tex]\( n \)[/tex] terms of the first A.P.:
[tex]\[ S_{1,n} = \frac{n}{2} \left[ 2(-4) + (n - 1) \cdot 4 \right] \][/tex]
[tex]\[ S_{1,n} = \frac{n}{2} \left[ -8 + 4n - 4 \right] \][/tex]
[tex]\[ S_{1,n} = \frac{n}{2} \left[ 4n - 12 \right] \][/tex]
[tex]\[ S_{1,n} = \frac{n}{2} \cdot 4(n - 3) \][/tex]
[tex]\[ S_{1,n} = 2n(n - 3) \][/tex]
[tex]\[ S_{1,n} = 2n^2 - 6n \][/tex]
Sum of the first [tex]\( n \)[/tex] terms of the second A.P.:
[tex]\[ S_{2,n} = \frac{n}{2} \left[ 2(2) + (n - 1) \cdot 2 \right] \][/tex]
[tex]\[ S_{2,n} = \frac{n}{2} \left[ 4 + 2n - 2 \right] \][/tex]
[tex]\[ S_{2,n} = \frac{n}{2} \left[ 2n + 2 \right] \][/tex]
[tex]\[ S_{2,n} = \frac{n}{2} \cdot 2(n + 1) \][/tex]
[tex]\[ S_{2,n} = n(n + 1) \][/tex]
[tex]\[ S_{2,n} = n^2 + n \][/tex]
### Step 4: Setting the Sums Equal and Solving for [tex]\( n \)[/tex]
Set [tex]\( S_{1,n} \)[/tex] equal to [tex]\( S_{2,n} \)[/tex]:
[tex]\[ 2n^2 - 6n = n^2 + n \][/tex]
Move all terms to one side to form a quadratic equation:
[tex]\[ 2n^2 - 6n - n^2 - n = 0 \][/tex]
[tex]\[ n^2 - 7n = 0 \][/tex]
Factor out [tex]\( n \)[/tex]:
[tex]\[ n(n - 7) = 0 \][/tex]
Set each factor to zero:
[tex]\[ n = 0 \quad \text{or} \quad n - 7 = 0 \][/tex]
[tex]\[ n = 0 \quad \text{or} \quad n = 7 \][/tex]
### Step 5: Conclusion
The values of [tex]\( n \)[/tex] for which the sums of the first terms of both arithmetic progressions are equal are:
[tex]\[ n = 0 \quad \text{or} \quad n = 7 \][/tex]
Since [tex]\( n = 0 \)[/tex] does not make sense in the context of summing the first [tex]\( n \)[/tex] terms, we discard [tex]\( n = 0 \)[/tex].
Thus, the value of [tex]\( n \)[/tex] is:
[tex]\[ n = 7 \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.