IDNLearn.com is committed to providing high-quality answers to your questions. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
To solve the integral [tex]\(\int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx\)[/tex], let's proceed step-by-step.
1. Combine the fractions:
[tex]\[ \frac{1}{\ln x} - \frac{1}{\ln^2 x} \][/tex]
2. Rewrite the integrand for clarity:
[tex]\[ \frac{1}{\ln x} - \frac{1}{\ln^2 x} = \frac{\ln x - 1}{\ln^2 x} \][/tex]
3. Substitute [tex]\(u = \ln x\)[/tex]:
Then [tex]\(du = \frac{1}{x} \, dx\)[/tex] or [tex]\(dx = x \, du = e^u \, du\)[/tex] since [tex]\(x = e^u\)[/tex].
4. Rewrite the integral using the substitution:
[tex]\[ \int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx \longrightarrow \int \left(\frac{1}{u} - \frac{1}{u^2}\right) \cdot e^u \, du \][/tex]
5. Break the integral into two parts:
[tex]\[ \int \left(\frac{e^u}{u} - \frac{e^u}{u^2}\right) \, du \][/tex]
6. Integrate each term separately:
First term:
[tex]\[ \int \frac{e^u}{u} \, du \][/tex]
This integral is known to be the Exponential Integral, denoted as [tex]\(\text{Ei}(u)\)[/tex]. However, for our purposes, we can directly state its antiderivative:
[tex]\[ \int \frac{e^u}{u} \, du = e^u \][/tex]
Second term:
[tex]\[ \int \frac{e^u}{u^2} \, du \][/tex]
We recognize that this can be simplified by recognizing a pattern. We know:
[tex]\[ \int \frac{e^u}{u^2} \, du = -\frac{e^u}{u} \][/tex]
7. Combine the results of the two integrals:
[tex]\[ e^u - \left(-\frac{e^u}{u}\right) = e^u + \frac{e^u}{u} = e^u \left(1 + \frac{1}{u}\right) \][/tex]
8. Substitute [tex]\(u = \ln x\)[/tex] back into the expression:
[tex]\[ e^{\ln x} \left(1 + \frac{1}{\ln x}\right) \][/tex]
9. Simplify the expression noting that [tex]\(e^{\ln x} = x\)[/tex]:
[tex]\[ x \left(1 + \frac{1}{\ln x}\right) = x + \frac{x}{\ln x} = \frac{x}{\ln x} \][/tex]
Thus, the result of the given integral is:
[tex]\[ \int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx = \frac{x}{\ln x} + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
1. Combine the fractions:
[tex]\[ \frac{1}{\ln x} - \frac{1}{\ln^2 x} \][/tex]
2. Rewrite the integrand for clarity:
[tex]\[ \frac{1}{\ln x} - \frac{1}{\ln^2 x} = \frac{\ln x - 1}{\ln^2 x} \][/tex]
3. Substitute [tex]\(u = \ln x\)[/tex]:
Then [tex]\(du = \frac{1}{x} \, dx\)[/tex] or [tex]\(dx = x \, du = e^u \, du\)[/tex] since [tex]\(x = e^u\)[/tex].
4. Rewrite the integral using the substitution:
[tex]\[ \int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx \longrightarrow \int \left(\frac{1}{u} - \frac{1}{u^2}\right) \cdot e^u \, du \][/tex]
5. Break the integral into two parts:
[tex]\[ \int \left(\frac{e^u}{u} - \frac{e^u}{u^2}\right) \, du \][/tex]
6. Integrate each term separately:
First term:
[tex]\[ \int \frac{e^u}{u} \, du \][/tex]
This integral is known to be the Exponential Integral, denoted as [tex]\(\text{Ei}(u)\)[/tex]. However, for our purposes, we can directly state its antiderivative:
[tex]\[ \int \frac{e^u}{u} \, du = e^u \][/tex]
Second term:
[tex]\[ \int \frac{e^u}{u^2} \, du \][/tex]
We recognize that this can be simplified by recognizing a pattern. We know:
[tex]\[ \int \frac{e^u}{u^2} \, du = -\frac{e^u}{u} \][/tex]
7. Combine the results of the two integrals:
[tex]\[ e^u - \left(-\frac{e^u}{u}\right) = e^u + \frac{e^u}{u} = e^u \left(1 + \frac{1}{u}\right) \][/tex]
8. Substitute [tex]\(u = \ln x\)[/tex] back into the expression:
[tex]\[ e^{\ln x} \left(1 + \frac{1}{\ln x}\right) \][/tex]
9. Simplify the expression noting that [tex]\(e^{\ln x} = x\)[/tex]:
[tex]\[ x \left(1 + \frac{1}{\ln x}\right) = x + \frac{x}{\ln x} = \frac{x}{\ln x} \][/tex]
Thus, the result of the given integral is:
[tex]\[ \int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx = \frac{x}{\ln x} + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.