IDNLearn.com: Where your questions meet expert answers and community support. Our platform provides prompt, accurate answers from experts ready to assist you with any question you may have.
Sagot :
To solve the integral [tex]\(\int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx\)[/tex], let's proceed step-by-step.
1. Combine the fractions:
[tex]\[ \frac{1}{\ln x} - \frac{1}{\ln^2 x} \][/tex]
2. Rewrite the integrand for clarity:
[tex]\[ \frac{1}{\ln x} - \frac{1}{\ln^2 x} = \frac{\ln x - 1}{\ln^2 x} \][/tex]
3. Substitute [tex]\(u = \ln x\)[/tex]:
Then [tex]\(du = \frac{1}{x} \, dx\)[/tex] or [tex]\(dx = x \, du = e^u \, du\)[/tex] since [tex]\(x = e^u\)[/tex].
4. Rewrite the integral using the substitution:
[tex]\[ \int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx \longrightarrow \int \left(\frac{1}{u} - \frac{1}{u^2}\right) \cdot e^u \, du \][/tex]
5. Break the integral into two parts:
[tex]\[ \int \left(\frac{e^u}{u} - \frac{e^u}{u^2}\right) \, du \][/tex]
6. Integrate each term separately:
First term:
[tex]\[ \int \frac{e^u}{u} \, du \][/tex]
This integral is known to be the Exponential Integral, denoted as [tex]\(\text{Ei}(u)\)[/tex]. However, for our purposes, we can directly state its antiderivative:
[tex]\[ \int \frac{e^u}{u} \, du = e^u \][/tex]
Second term:
[tex]\[ \int \frac{e^u}{u^2} \, du \][/tex]
We recognize that this can be simplified by recognizing a pattern. We know:
[tex]\[ \int \frac{e^u}{u^2} \, du = -\frac{e^u}{u} \][/tex]
7. Combine the results of the two integrals:
[tex]\[ e^u - \left(-\frac{e^u}{u}\right) = e^u + \frac{e^u}{u} = e^u \left(1 + \frac{1}{u}\right) \][/tex]
8. Substitute [tex]\(u = \ln x\)[/tex] back into the expression:
[tex]\[ e^{\ln x} \left(1 + \frac{1}{\ln x}\right) \][/tex]
9. Simplify the expression noting that [tex]\(e^{\ln x} = x\)[/tex]:
[tex]\[ x \left(1 + \frac{1}{\ln x}\right) = x + \frac{x}{\ln x} = \frac{x}{\ln x} \][/tex]
Thus, the result of the given integral is:
[tex]\[ \int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx = \frac{x}{\ln x} + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
1. Combine the fractions:
[tex]\[ \frac{1}{\ln x} - \frac{1}{\ln^2 x} \][/tex]
2. Rewrite the integrand for clarity:
[tex]\[ \frac{1}{\ln x} - \frac{1}{\ln^2 x} = \frac{\ln x - 1}{\ln^2 x} \][/tex]
3. Substitute [tex]\(u = \ln x\)[/tex]:
Then [tex]\(du = \frac{1}{x} \, dx\)[/tex] or [tex]\(dx = x \, du = e^u \, du\)[/tex] since [tex]\(x = e^u\)[/tex].
4. Rewrite the integral using the substitution:
[tex]\[ \int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx \longrightarrow \int \left(\frac{1}{u} - \frac{1}{u^2}\right) \cdot e^u \, du \][/tex]
5. Break the integral into two parts:
[tex]\[ \int \left(\frac{e^u}{u} - \frac{e^u}{u^2}\right) \, du \][/tex]
6. Integrate each term separately:
First term:
[tex]\[ \int \frac{e^u}{u} \, du \][/tex]
This integral is known to be the Exponential Integral, denoted as [tex]\(\text{Ei}(u)\)[/tex]. However, for our purposes, we can directly state its antiderivative:
[tex]\[ \int \frac{e^u}{u} \, du = e^u \][/tex]
Second term:
[tex]\[ \int \frac{e^u}{u^2} \, du \][/tex]
We recognize that this can be simplified by recognizing a pattern. We know:
[tex]\[ \int \frac{e^u}{u^2} \, du = -\frac{e^u}{u} \][/tex]
7. Combine the results of the two integrals:
[tex]\[ e^u - \left(-\frac{e^u}{u}\right) = e^u + \frac{e^u}{u} = e^u \left(1 + \frac{1}{u}\right) \][/tex]
8. Substitute [tex]\(u = \ln x\)[/tex] back into the expression:
[tex]\[ e^{\ln x} \left(1 + \frac{1}{\ln x}\right) \][/tex]
9. Simplify the expression noting that [tex]\(e^{\ln x} = x\)[/tex]:
[tex]\[ x \left(1 + \frac{1}{\ln x}\right) = x + \frac{x}{\ln x} = \frac{x}{\ln x} \][/tex]
Thus, the result of the given integral is:
[tex]\[ \int \left(\frac{1}{\ln x} - \frac{1}{\ln^2 x}\right) \, dx = \frac{x}{\ln x} + C \][/tex]
where [tex]\(C\)[/tex] is the constant of integration.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.