At IDNLearn.com, find answers to your most pressing questions from experts and enthusiasts alike. Get the information you need from our community of experts, who provide detailed and trustworthy answers.
Sagot :
To find the limit [tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex], let's take a detailed, step-by-step approach.
1. Initial expression:
[tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex]
2. Rationalize the expression:
To simplify the expression, we rationalize it by multiplying and dividing by the conjugate. The conjugate of [tex]\(\sqrt{x + a} - \sqrt{x}\)[/tex] is [tex]\(\sqrt{x + a} + \sqrt{x}\)[/tex].
[tex]\[ \lim_{x \to \infty} \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{\sqrt{x + a} + \sqrt{x}} \][/tex]
3. Simplify the numerator:
Using the difference of squares formula [tex]\((\sqrt{A} - \sqrt{B})(\sqrt{A} + \sqrt{B}) = A - B\)[/tex], we simplify the numerator:
[tex]\[ (\sqrt{x + a})^2 - (\sqrt{x})^2 = (x + a) - x = a \][/tex]
Thus, the expression becomes:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
4. Simplify the denominator:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(x + a\)[/tex] is approximately [tex]\(x\)[/tex], hence [tex]\(\sqrt{x + a}\)[/tex] is approximately [tex]\(\sqrt{x}\)[/tex]. This simplification allows us to approximate the denominator.
[tex]\[ \sqrt{x + a} + \sqrt{x} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]
5. Revise the limit expression:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
6. Evaluate the limit:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x}\)[/tex] also approaches infinity. Therefore, the fraction [tex]\(\frac{a}{2\sqrt{x}}\)[/tex] approaches zero because the numerator [tex]\(a\)[/tex] is a constant and the denominator [tex]\(2\sqrt{x}\)[/tex] grows without bound.
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} = 0 \][/tex]
Thus, we find that:
[tex]\[ \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = 0 \][/tex]
1. Initial expression:
[tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex]
2. Rationalize the expression:
To simplify the expression, we rationalize it by multiplying and dividing by the conjugate. The conjugate of [tex]\(\sqrt{x + a} - \sqrt{x}\)[/tex] is [tex]\(\sqrt{x + a} + \sqrt{x}\)[/tex].
[tex]\[ \lim_{x \to \infty} \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{\sqrt{x + a} + \sqrt{x}} \][/tex]
3. Simplify the numerator:
Using the difference of squares formula [tex]\((\sqrt{A} - \sqrt{B})(\sqrt{A} + \sqrt{B}) = A - B\)[/tex], we simplify the numerator:
[tex]\[ (\sqrt{x + a})^2 - (\sqrt{x})^2 = (x + a) - x = a \][/tex]
Thus, the expression becomes:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
4. Simplify the denominator:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(x + a\)[/tex] is approximately [tex]\(x\)[/tex], hence [tex]\(\sqrt{x + a}\)[/tex] is approximately [tex]\(\sqrt{x}\)[/tex]. This simplification allows us to approximate the denominator.
[tex]\[ \sqrt{x + a} + \sqrt{x} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]
5. Revise the limit expression:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
6. Evaluate the limit:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x}\)[/tex] also approaches infinity. Therefore, the fraction [tex]\(\frac{a}{2\sqrt{x}}\)[/tex] approaches zero because the numerator [tex]\(a\)[/tex] is a constant and the denominator [tex]\(2\sqrt{x}\)[/tex] grows without bound.
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} = 0 \][/tex]
Thus, we find that:
[tex]\[ \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = 0 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.