Get detailed and accurate responses to your questions with IDNLearn.com. Our community is here to provide the comprehensive and accurate answers you need to make informed decisions.
Sagot :
To find the limit [tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex], let's take a detailed, step-by-step approach.
1. Initial expression:
[tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex]
2. Rationalize the expression:
To simplify the expression, we rationalize it by multiplying and dividing by the conjugate. The conjugate of [tex]\(\sqrt{x + a} - \sqrt{x}\)[/tex] is [tex]\(\sqrt{x + a} + \sqrt{x}\)[/tex].
[tex]\[ \lim_{x \to \infty} \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{\sqrt{x + a} + \sqrt{x}} \][/tex]
3. Simplify the numerator:
Using the difference of squares formula [tex]\((\sqrt{A} - \sqrt{B})(\sqrt{A} + \sqrt{B}) = A - B\)[/tex], we simplify the numerator:
[tex]\[ (\sqrt{x + a})^2 - (\sqrt{x})^2 = (x + a) - x = a \][/tex]
Thus, the expression becomes:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
4. Simplify the denominator:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(x + a\)[/tex] is approximately [tex]\(x\)[/tex], hence [tex]\(\sqrt{x + a}\)[/tex] is approximately [tex]\(\sqrt{x}\)[/tex]. This simplification allows us to approximate the denominator.
[tex]\[ \sqrt{x + a} + \sqrt{x} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]
5. Revise the limit expression:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
6. Evaluate the limit:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x}\)[/tex] also approaches infinity. Therefore, the fraction [tex]\(\frac{a}{2\sqrt{x}}\)[/tex] approaches zero because the numerator [tex]\(a\)[/tex] is a constant and the denominator [tex]\(2\sqrt{x}\)[/tex] grows without bound.
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} = 0 \][/tex]
Thus, we find that:
[tex]\[ \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = 0 \][/tex]
1. Initial expression:
[tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex]
2. Rationalize the expression:
To simplify the expression, we rationalize it by multiplying and dividing by the conjugate. The conjugate of [tex]\(\sqrt{x + a} - \sqrt{x}\)[/tex] is [tex]\(\sqrt{x + a} + \sqrt{x}\)[/tex].
[tex]\[ \lim_{x \to \infty} \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{\sqrt{x + a} + \sqrt{x}} \][/tex]
3. Simplify the numerator:
Using the difference of squares formula [tex]\((\sqrt{A} - \sqrt{B})(\sqrt{A} + \sqrt{B}) = A - B\)[/tex], we simplify the numerator:
[tex]\[ (\sqrt{x + a})^2 - (\sqrt{x})^2 = (x + a) - x = a \][/tex]
Thus, the expression becomes:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
4. Simplify the denominator:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(x + a\)[/tex] is approximately [tex]\(x\)[/tex], hence [tex]\(\sqrt{x + a}\)[/tex] is approximately [tex]\(\sqrt{x}\)[/tex]. This simplification allows us to approximate the denominator.
[tex]\[ \sqrt{x + a} + \sqrt{x} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]
5. Revise the limit expression:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
6. Evaluate the limit:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x}\)[/tex] also approaches infinity. Therefore, the fraction [tex]\(\frac{a}{2\sqrt{x}}\)[/tex] approaches zero because the numerator [tex]\(a\)[/tex] is a constant and the denominator [tex]\(2\sqrt{x}\)[/tex] grows without bound.
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} = 0 \][/tex]
Thus, we find that:
[tex]\[ \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = 0 \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.