IDNLearn.com provides a user-friendly platform for finding and sharing knowledge. Our Q&A platform offers detailed and trustworthy answers to ensure you have the information you need.
Sagot :
To find the limit [tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex], let's take a detailed, step-by-step approach.
1. Initial expression:
[tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex]
2. Rationalize the expression:
To simplify the expression, we rationalize it by multiplying and dividing by the conjugate. The conjugate of [tex]\(\sqrt{x + a} - \sqrt{x}\)[/tex] is [tex]\(\sqrt{x + a} + \sqrt{x}\)[/tex].
[tex]\[ \lim_{x \to \infty} \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{\sqrt{x + a} + \sqrt{x}} \][/tex]
3. Simplify the numerator:
Using the difference of squares formula [tex]\((\sqrt{A} - \sqrt{B})(\sqrt{A} + \sqrt{B}) = A - B\)[/tex], we simplify the numerator:
[tex]\[ (\sqrt{x + a})^2 - (\sqrt{x})^2 = (x + a) - x = a \][/tex]
Thus, the expression becomes:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
4. Simplify the denominator:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(x + a\)[/tex] is approximately [tex]\(x\)[/tex], hence [tex]\(\sqrt{x + a}\)[/tex] is approximately [tex]\(\sqrt{x}\)[/tex]. This simplification allows us to approximate the denominator.
[tex]\[ \sqrt{x + a} + \sqrt{x} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]
5. Revise the limit expression:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
6. Evaluate the limit:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x}\)[/tex] also approaches infinity. Therefore, the fraction [tex]\(\frac{a}{2\sqrt{x}}\)[/tex] approaches zero because the numerator [tex]\(a\)[/tex] is a constant and the denominator [tex]\(2\sqrt{x}\)[/tex] grows without bound.
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} = 0 \][/tex]
Thus, we find that:
[tex]\[ \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = 0 \][/tex]
1. Initial expression:
[tex]\(\lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x})\)[/tex]
2. Rationalize the expression:
To simplify the expression, we rationalize it by multiplying and dividing by the conjugate. The conjugate of [tex]\(\sqrt{x + a} - \sqrt{x}\)[/tex] is [tex]\(\sqrt{x + a} + \sqrt{x}\)[/tex].
[tex]\[ \lim_{x \to \infty} \frac{(\sqrt{x + a} - \sqrt{x})(\sqrt{x + a} + \sqrt{x})}{\sqrt{x + a} + \sqrt{x}} \][/tex]
3. Simplify the numerator:
Using the difference of squares formula [tex]\((\sqrt{A} - \sqrt{B})(\sqrt{A} + \sqrt{B}) = A - B\)[/tex], we simplify the numerator:
[tex]\[ (\sqrt{x + a})^2 - (\sqrt{x})^2 = (x + a) - x = a \][/tex]
Thus, the expression becomes:
[tex]\[ \lim_{x \to \infty} \frac{a}{\sqrt{x + a} + \sqrt{x}} \][/tex]
4. Simplify the denominator:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(x + a\)[/tex] is approximately [tex]\(x\)[/tex], hence [tex]\(\sqrt{x + a}\)[/tex] is approximately [tex]\(\sqrt{x}\)[/tex]. This simplification allows us to approximate the denominator.
[tex]\[ \sqrt{x + a} + \sqrt{x} \approx \sqrt{x} + \sqrt{x} = 2\sqrt{x} \][/tex]
5. Revise the limit expression:
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} \][/tex]
6. Evaluate the limit:
As [tex]\(x\)[/tex] approaches infinity, [tex]\(\sqrt{x}\)[/tex] also approaches infinity. Therefore, the fraction [tex]\(\frac{a}{2\sqrt{x}}\)[/tex] approaches zero because the numerator [tex]\(a\)[/tex] is a constant and the denominator [tex]\(2\sqrt{x}\)[/tex] grows without bound.
[tex]\[ \lim_{x \to \infty} \frac{a}{2\sqrt{x}} = 0 \][/tex]
Thus, we find that:
[tex]\[ \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}) = 0 \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to assisting you again.