Discover a wealth of knowledge and get your questions answered on IDNLearn.com. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
To prove that [tex]\(\tan \frac{\alpha - \beta}{2} = \pm \sqrt{\frac{4 - x^2}{x^2 + y^2}}\)[/tex], given [tex]\(\sin \alpha + \sin \beta = x\)[/tex] and [tex]\(\cos \alpha + \cos \beta = y\)[/tex], follow these steps:
1. Use Trigonometric Identities:
We start with the given trigonometric sum identities:
[tex]\[ \sin \alpha + \sin \beta = 2 \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) \][/tex]
[tex]\[ \cos \alpha + \cos \beta = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) \][/tex]
2. Assign These to the Given Values:
According to the problem:
[tex]\[ \sin \alpha + \sin \beta = x \][/tex]
[tex]\[ \cos \alpha + \cos \beta = y \][/tex]
3. Relate to Sum and Product Formulas:
Substitute the identities into the given equations:
[tex]\[ 2 \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) = x \][/tex]
[tex]\[ 2 \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) = y \][/tex]
4. Simplify the Equations:
Divide both sides of each equation by 2:
[tex]\[ \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) = \frac{x}{2} \][/tex]
[tex]\[ \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) = \frac{y}{2} \][/tex]
5. Introduce New Terms for Simplicity:
Let:
[tex]\[ A = \cos \left( \frac{\alpha - \beta}{2} \right) \][/tex]
[tex]\[ B = \sin \left( \frac{\alpha + \beta}{2} \right) \][/tex]
[tex]\[ C = \cos \left( \frac{\alpha + \beta}{2} \right) \][/tex]
Therefore, the equations become:
[tex]\[ B A = \frac{x}{2} \][/tex]
[tex]\[ C A = \frac{y}{2} \][/tex]
6. Divide the Equations:
Divide the first equation by the second:
[tex]\[ \frac{B A}{C A} = \frac{\frac{x}{2}}{\frac{y}{2}} \][/tex]
This simplifies to:
[tex]\[ \frac{B}{C} = \frac{x}{y} \][/tex]
Thus:
[tex]\[ \tan \left( \frac{\alpha + \beta}{2} \right) = \frac{x}{y} \][/tex]
7. Use the Pythagorean Identity:
We know:
[tex]\[ B^2 + C^2 = \left( \sin \left( \frac{\alpha + \beta}{2} \right) \right)^2 + \left( \cos \left( \frac{\alpha + \beta}{2} \right) \right)^2 = 1 \][/tex]
Therefore:
[tex]\[ \left( \frac{x}{2A} \right)^2 + \left( \frac{y}{2A} \right)^2 = 1 \][/tex]
8. Simplify This Expression:
[tex]\[ \frac{x^2}{4A^2} + \frac{y^2}{4A^2} = 1 \][/tex]
[tex]\[ \frac{x^2 + y^2}{4A^2} = 1 \][/tex]
Solving for [tex]\(A\)[/tex]:
[tex]\[ 4A^2 = x^2 + y^2 \][/tex]
[tex]\[ A^2 = \frac{x^2 + y^2}{4} \][/tex]
Therefore:
[tex]\[ A = \frac{\sqrt{x^2 + y^2}}{2} \][/tex]
9. Use the [tex]\(\tan \frac{\alpha - \beta}{2}\)[/tex] Identity:
We know:
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) + \cos^2 \left( \frac{\alpha - \beta}{2} \right) = 1 \][/tex]
So:
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) = 1 - \cos^2 \left( \frac{\alpha - \beta}{2} \right) \][/tex]
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) = 1 - \left( \frac{\sqrt{x^2 + y^2}}{2} \right)^2 \][/tex]
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) = 1 - \frac{x^2 + y^2}{4} \][/tex]
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) = \frac{4 - (x^2 + y^2)}{4} \][/tex]
[tex]\[ \sin \left( \frac{\alpha - \beta}{2} \right) = \frac{\sqrt{4 - x^2 - y^2}}{2} \][/tex]
10. Find [tex]\(\tan \left( \frac{\alpha - \beta}{2} \right)\)[/tex]:
Thus:
[tex]\[ \tan \left( \frac{\alpha - \beta}{2} \right) = \frac{\sin \left( \frac{\alpha - \beta}{2} \right)}{\cos \left( \frac{\alpha - \beta}{2} \right)} \][/tex]
[tex]\[ = \frac{\frac{\sqrt{4 - x^2 - y^2}}{2}}{\frac{\sqrt{x^2 + y^2}}{2}} \][/tex]
[tex]\[ = \pm \sqrt{\frac{4 - x^2 - y^2}{x^2 + y^2}} \][/tex]
Finally, we have proven:
[tex]\[ \tan \left( \frac{\alpha - \beta}{2} \right) = \pm \sqrt{\frac{4 - x^2}{x^2 + y^2}} \][/tex]
1. Use Trigonometric Identities:
We start with the given trigonometric sum identities:
[tex]\[ \sin \alpha + \sin \beta = 2 \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) \][/tex]
[tex]\[ \cos \alpha + \cos \beta = 2 \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) \][/tex]
2. Assign These to the Given Values:
According to the problem:
[tex]\[ \sin \alpha + \sin \beta = x \][/tex]
[tex]\[ \cos \alpha + \cos \beta = y \][/tex]
3. Relate to Sum and Product Formulas:
Substitute the identities into the given equations:
[tex]\[ 2 \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) = x \][/tex]
[tex]\[ 2 \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) = y \][/tex]
4. Simplify the Equations:
Divide both sides of each equation by 2:
[tex]\[ \sin \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) = \frac{x}{2} \][/tex]
[tex]\[ \cos \left( \frac{\alpha + \beta}{2} \right) \cos \left( \frac{\alpha - \beta}{2} \right) = \frac{y}{2} \][/tex]
5. Introduce New Terms for Simplicity:
Let:
[tex]\[ A = \cos \left( \frac{\alpha - \beta}{2} \right) \][/tex]
[tex]\[ B = \sin \left( \frac{\alpha + \beta}{2} \right) \][/tex]
[tex]\[ C = \cos \left( \frac{\alpha + \beta}{2} \right) \][/tex]
Therefore, the equations become:
[tex]\[ B A = \frac{x}{2} \][/tex]
[tex]\[ C A = \frac{y}{2} \][/tex]
6. Divide the Equations:
Divide the first equation by the second:
[tex]\[ \frac{B A}{C A} = \frac{\frac{x}{2}}{\frac{y}{2}} \][/tex]
This simplifies to:
[tex]\[ \frac{B}{C} = \frac{x}{y} \][/tex]
Thus:
[tex]\[ \tan \left( \frac{\alpha + \beta}{2} \right) = \frac{x}{y} \][/tex]
7. Use the Pythagorean Identity:
We know:
[tex]\[ B^2 + C^2 = \left( \sin \left( \frac{\alpha + \beta}{2} \right) \right)^2 + \left( \cos \left( \frac{\alpha + \beta}{2} \right) \right)^2 = 1 \][/tex]
Therefore:
[tex]\[ \left( \frac{x}{2A} \right)^2 + \left( \frac{y}{2A} \right)^2 = 1 \][/tex]
8. Simplify This Expression:
[tex]\[ \frac{x^2}{4A^2} + \frac{y^2}{4A^2} = 1 \][/tex]
[tex]\[ \frac{x^2 + y^2}{4A^2} = 1 \][/tex]
Solving for [tex]\(A\)[/tex]:
[tex]\[ 4A^2 = x^2 + y^2 \][/tex]
[tex]\[ A^2 = \frac{x^2 + y^2}{4} \][/tex]
Therefore:
[tex]\[ A = \frac{\sqrt{x^2 + y^2}}{2} \][/tex]
9. Use the [tex]\(\tan \frac{\alpha - \beta}{2}\)[/tex] Identity:
We know:
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) + \cos^2 \left( \frac{\alpha - \beta}{2} \right) = 1 \][/tex]
So:
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) = 1 - \cos^2 \left( \frac{\alpha - \beta}{2} \right) \][/tex]
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) = 1 - \left( \frac{\sqrt{x^2 + y^2}}{2} \right)^2 \][/tex]
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) = 1 - \frac{x^2 + y^2}{4} \][/tex]
[tex]\[ \sin^2 \left( \frac{\alpha - \beta}{2} \right) = \frac{4 - (x^2 + y^2)}{4} \][/tex]
[tex]\[ \sin \left( \frac{\alpha - \beta}{2} \right) = \frac{\sqrt{4 - x^2 - y^2}}{2} \][/tex]
10. Find [tex]\(\tan \left( \frac{\alpha - \beta}{2} \right)\)[/tex]:
Thus:
[tex]\[ \tan \left( \frac{\alpha - \beta}{2} \right) = \frac{\sin \left( \frac{\alpha - \beta}{2} \right)}{\cos \left( \frac{\alpha - \beta}{2} \right)} \][/tex]
[tex]\[ = \frac{\frac{\sqrt{4 - x^2 - y^2}}{2}}{\frac{\sqrt{x^2 + y^2}}{2}} \][/tex]
[tex]\[ = \pm \sqrt{\frac{4 - x^2 - y^2}{x^2 + y^2}} \][/tex]
Finally, we have proven:
[tex]\[ \tan \left( \frac{\alpha - \beta}{2} \right) = \pm \sqrt{\frac{4 - x^2}{x^2 + y^2}} \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.