Explore IDNLearn.com's extensive Q&A database and find the answers you need. Discover in-depth answers to your questions from our community of experienced professionals.
Sagot :
To solve the equation [tex]\(x^3 - 5x^2 + 2 = -x^3 + 17x\)[/tex], let's start by simplifying and combining like terms.
Step 1: Start with the given equation:
[tex]\[ x^3 - 5x^2 + 2 = -x^3 + 17x \][/tex]
Step 2: Move all terms to one side to set the equation to 0. Add [tex]\(x^3\)[/tex] and subtract [tex]\(17x\)[/tex] from both sides:
[tex]\[ x^3 - 5x^2 + 2 + x^3 - 17x = 0 \][/tex]
[tex]\[ 2x^3 - 5x^2 - 17x + 2 = 0 \][/tex]
Now we have a polynomial equation:
[tex]\[ 2x^3 - 5x^2 - 17x + 2 = 0 \][/tex]
Step 3: Solve the polynomial equation. This involves finding the roots of the polynomial [tex]\(2x^3 - 5x^2 - 17x + 2\)[/tex].
Finding the exact roots of a cubic equation typically requires numerical methods or algebraic manipulation. We can use techniques such as the Rational Root Theorem to test possible rational roots, and then use polynomial division.
Step 4: Test possible rational roots. The Rational Root Theorem states that any rational root of the polynomial [tex]\(a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0\)[/tex] is a factor of the constant term [tex]\(a_0\)[/tex] divided by a factor of the leading coefficient [tex]\(a_n\)[/tex].
For our polynomial [tex]\(2x^3 - 5x^2 - 17x + 2\)[/tex]:
- The constant term [tex]\(a_0 = 2\)[/tex]
- The leading coefficient [tex]\(a_n = 2\)[/tex]
The possible rational roots are therefore:
[tex]\[ \pm 1, \pm 2 \][/tex]
Step 5: Test these possible rational roots by substituting them into the polynomial:
- For [tex]\(x = 1\)[/tex]:
[tex]\[ 2(1)^3 - 5(1)^2 - 17(1) + 2 = 2 - 5 - 17 + 2 = -18 \neq 0 \][/tex]
- For [tex]\(x = -1\)[/tex]:
[tex]\[ 2(-1)^3 - 5(-1)^2 - 17(-1) + 2 = -2 - 5 + 17 + 2 = 12 \neq 0 \][/tex]
- For [tex]\(x = 2\)[/tex]:
[tex]\[ 2(2)^3 - 5(2)^2 - 17(2) + 2 = 16 - 20 - 34 + 2 = -36 \neq 0 \][/tex]
- For [tex]\(x = -2\)[/tex]:
[tex]\[ 2(-2)^3 - 5(-2)^2 - 17(-2) + 2 = -16 - 20 + 34 + 2 = 0 \][/tex]
So, [tex]\(x = -2\)[/tex] is a root.
Step 6: Perform polynomial division to factor out [tex]\((x + 2)\)[/tex]:
[tex]\[ 2x^3 - 5x^2 - 17x + 2 \div (x + 2) \][/tex]
Using synthetic division or long division, we find:
[tex]\[ 2x^3 - 5x^2 - 17x + 2 = (x + 2)(2x^2 - 9x - 1) \][/tex]
Step 7: Solve the quadratic equation [tex]\(2x^2 - 9x - 1 = 0\)[/tex] using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = -9\)[/tex], and [tex]\(c = -1\)[/tex].
[tex]\[ x = \frac{9 \pm \sqrt{81 + 8}}{4} = \frac{9 \pm \sqrt{89}}{4} \][/tex]
So, the two roots are:
[tex]\[ x = \frac{9 + \sqrt{89}}{4} \approx 2.85 \][/tex]
[tex]\[ x = \frac{9 - \sqrt{89}}{4} \approx -0.35 \][/tex]
Step 8: Combine all roots, including the factor obtained earlier:
The roots of the equation [tex]\(x^3 - 5x^2 + 2 = -x^3 + 17x\)[/tex] are:
[tex]\[ x = -2, \, 2.85, \, -0.35 \][/tex]
Rounded to the nearest hundredth, the non-integer roots are:
[tex]\[ x \approx 2.85, -0.35 \][/tex]
Thus, the roots of the polynomial equation are approximately:
[tex]\[ -2, 2.85, -0.35 \][/tex]
Step 1: Start with the given equation:
[tex]\[ x^3 - 5x^2 + 2 = -x^3 + 17x \][/tex]
Step 2: Move all terms to one side to set the equation to 0. Add [tex]\(x^3\)[/tex] and subtract [tex]\(17x\)[/tex] from both sides:
[tex]\[ x^3 - 5x^2 + 2 + x^3 - 17x = 0 \][/tex]
[tex]\[ 2x^3 - 5x^2 - 17x + 2 = 0 \][/tex]
Now we have a polynomial equation:
[tex]\[ 2x^3 - 5x^2 - 17x + 2 = 0 \][/tex]
Step 3: Solve the polynomial equation. This involves finding the roots of the polynomial [tex]\(2x^3 - 5x^2 - 17x + 2\)[/tex].
Finding the exact roots of a cubic equation typically requires numerical methods or algebraic manipulation. We can use techniques such as the Rational Root Theorem to test possible rational roots, and then use polynomial division.
Step 4: Test possible rational roots. The Rational Root Theorem states that any rational root of the polynomial [tex]\(a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0\)[/tex] is a factor of the constant term [tex]\(a_0\)[/tex] divided by a factor of the leading coefficient [tex]\(a_n\)[/tex].
For our polynomial [tex]\(2x^3 - 5x^2 - 17x + 2\)[/tex]:
- The constant term [tex]\(a_0 = 2\)[/tex]
- The leading coefficient [tex]\(a_n = 2\)[/tex]
The possible rational roots are therefore:
[tex]\[ \pm 1, \pm 2 \][/tex]
Step 5: Test these possible rational roots by substituting them into the polynomial:
- For [tex]\(x = 1\)[/tex]:
[tex]\[ 2(1)^3 - 5(1)^2 - 17(1) + 2 = 2 - 5 - 17 + 2 = -18 \neq 0 \][/tex]
- For [tex]\(x = -1\)[/tex]:
[tex]\[ 2(-1)^3 - 5(-1)^2 - 17(-1) + 2 = -2 - 5 + 17 + 2 = 12 \neq 0 \][/tex]
- For [tex]\(x = 2\)[/tex]:
[tex]\[ 2(2)^3 - 5(2)^2 - 17(2) + 2 = 16 - 20 - 34 + 2 = -36 \neq 0 \][/tex]
- For [tex]\(x = -2\)[/tex]:
[tex]\[ 2(-2)^3 - 5(-2)^2 - 17(-2) + 2 = -16 - 20 + 34 + 2 = 0 \][/tex]
So, [tex]\(x = -2\)[/tex] is a root.
Step 6: Perform polynomial division to factor out [tex]\((x + 2)\)[/tex]:
[tex]\[ 2x^3 - 5x^2 - 17x + 2 \div (x + 2) \][/tex]
Using synthetic division or long division, we find:
[tex]\[ 2x^3 - 5x^2 - 17x + 2 = (x + 2)(2x^2 - 9x - 1) \][/tex]
Step 7: Solve the quadratic equation [tex]\(2x^2 - 9x - 1 = 0\)[/tex] using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a = 2\)[/tex], [tex]\(b = -9\)[/tex], and [tex]\(c = -1\)[/tex].
[tex]\[ x = \frac{9 \pm \sqrt{81 + 8}}{4} = \frac{9 \pm \sqrt{89}}{4} \][/tex]
So, the two roots are:
[tex]\[ x = \frac{9 + \sqrt{89}}{4} \approx 2.85 \][/tex]
[tex]\[ x = \frac{9 - \sqrt{89}}{4} \approx -0.35 \][/tex]
Step 8: Combine all roots, including the factor obtained earlier:
The roots of the equation [tex]\(x^3 - 5x^2 + 2 = -x^3 + 17x\)[/tex] are:
[tex]\[ x = -2, \, 2.85, \, -0.35 \][/tex]
Rounded to the nearest hundredth, the non-integer roots are:
[tex]\[ x \approx 2.85, -0.35 \][/tex]
Thus, the roots of the polynomial equation are approximately:
[tex]\[ -2, 2.85, -0.35 \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.