Get the information you need quickly and easily with IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
To determine the predicted change in the boiling point of water when 4.00 g of barium chloride ([tex]\( \text{BaCl}_2 \)[/tex]) is dissolved in 2.00 kg of water, we can follow a series of calculations:
1. Calculate the number of moles of [tex]\( \text{BaCl}_2 \)[/tex] dissolved:
[tex]\[ \text{moles of } \text{BaCl}_2 = \frac{\text{mass of } \text{BaCl}_2}{\text{molar mass of } \text{BaCl}_2} \][/tex]
Given:
[tex]\[ \text{mass of } \text{BaCl}_2 = 4.00 \, \text{g} \][/tex]
[tex]\[ \text{molar mass of } \text{BaCl}_2 = 208.23 \, \text{g/mol} \][/tex]
The number of moles of [tex]\( \text{BaCl}_2 \)[/tex] is:
[tex]\[ \text{moles of } \text{BaCl}_2 = \frac{4.00 \, \text{g}}{208.23 \, \text{g/mol}} \approx 0.0192 \, \text{moles} \][/tex]
2. Calculate the molality of the solution:
[tex]\[ \text{molality} = \frac{\text{moles of solute}}{\text{mass of solvent in kg}} \][/tex]
Given:
[tex]\[ \text{mass of water} = 2.00 \, \text{kg} \][/tex]
The molality of the solution is:
[tex]\[ \text{molality} = \frac{0.0192 \, \text{moles}}{2.00 \, \text{kg}} \approx 0.0096 \, \text{mol/kg} \][/tex]
3. Calculate the change in boiling point using the boiling point elevation formula:
[tex]\[ \Delta T_b = i \times K_b \times m \][/tex]
Given:
[tex]\[ i (\text{van't Hoff factor for } \text{BaCl}_2) = 3 \][/tex]
[tex]\[ K_b (\text{boiling point elevation constant}) = 0.51 \, ^\circ\text{C/mol} \][/tex]
[tex]\[ m (\text{molality}) = 0.0096 \, \text{mol/kg} \][/tex]
The change in boiling point is:
[tex]\[ \Delta T_b = 3 \times 0.51 \, ^\circ\text{C/mol} \times 0.0096 \, \text{mol/kg} \approx 0.015 \, ^\circ\text{C} \][/tex]
Thus, the predicted change in the boiling point of water is approximately [tex]\(0.015^\circ C\)[/tex].
So, the correct answer is:
D. [tex]\(0.015^\circ C\)[/tex]
1. Calculate the number of moles of [tex]\( \text{BaCl}_2 \)[/tex] dissolved:
[tex]\[ \text{moles of } \text{BaCl}_2 = \frac{\text{mass of } \text{BaCl}_2}{\text{molar mass of } \text{BaCl}_2} \][/tex]
Given:
[tex]\[ \text{mass of } \text{BaCl}_2 = 4.00 \, \text{g} \][/tex]
[tex]\[ \text{molar mass of } \text{BaCl}_2 = 208.23 \, \text{g/mol} \][/tex]
The number of moles of [tex]\( \text{BaCl}_2 \)[/tex] is:
[tex]\[ \text{moles of } \text{BaCl}_2 = \frac{4.00 \, \text{g}}{208.23 \, \text{g/mol}} \approx 0.0192 \, \text{moles} \][/tex]
2. Calculate the molality of the solution:
[tex]\[ \text{molality} = \frac{\text{moles of solute}}{\text{mass of solvent in kg}} \][/tex]
Given:
[tex]\[ \text{mass of water} = 2.00 \, \text{kg} \][/tex]
The molality of the solution is:
[tex]\[ \text{molality} = \frac{0.0192 \, \text{moles}}{2.00 \, \text{kg}} \approx 0.0096 \, \text{mol/kg} \][/tex]
3. Calculate the change in boiling point using the boiling point elevation formula:
[tex]\[ \Delta T_b = i \times K_b \times m \][/tex]
Given:
[tex]\[ i (\text{van't Hoff factor for } \text{BaCl}_2) = 3 \][/tex]
[tex]\[ K_b (\text{boiling point elevation constant}) = 0.51 \, ^\circ\text{C/mol} \][/tex]
[tex]\[ m (\text{molality}) = 0.0096 \, \text{mol/kg} \][/tex]
The change in boiling point is:
[tex]\[ \Delta T_b = 3 \times 0.51 \, ^\circ\text{C/mol} \times 0.0096 \, \text{mol/kg} \approx 0.015 \, ^\circ\text{C} \][/tex]
Thus, the predicted change in the boiling point of water is approximately [tex]\(0.015^\circ C\)[/tex].
So, the correct answer is:
D. [tex]\(0.015^\circ C\)[/tex]
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.