Find answers to your questions faster and easier with IDNLearn.com. Our platform is designed to provide reliable and thorough answers to all your questions, no matter the topic.

Use the drawing tool to form the correct answers on the provided graph.

A student observes that the motion of a weight oscillating up and down on a spring can be modeled by this equation, where [tex]\( h(t) \)[/tex] is the weight's height above the ground, in meters, and [tex]\( t \)[/tex] is the time, in seconds.

[tex]\[
h(t) = 0.5 \sin \left(\pi t + \frac{\pi}{2}\right) + 1
\][/tex]

On the graph, plot the points where height, [tex]\( h(t) \)[/tex], is at a maximum.


Sagot :

To find the points where the height [tex]\( h(t) \)[/tex] is at a maximum, we need to analyze the given equation:

[tex]\[ h(t) = 0.5 \sin \left(\pi t + \frac{\pi}{2}\right) + 1 \][/tex]

First, we look at the sine function [tex]\( \sin \left(\pi t + \frac{\pi}{2}\right) \)[/tex]. The sine function oscillates between -1 and 1. To find the maximum height, we need:

[tex]\[ \sin \left(\pi t + \frac{\pi}{2}\right) = 1 \][/tex]

The sine function [tex]\( \sin(x) \)[/tex] equals 1 at:

[tex]\[ x = \frac{\pi}{2} + 2k\pi \quad \text{for integers } k \][/tex]

So for the argument of the sine function, we have:

[tex]\[ \pi t + \frac{\pi}{2} = \frac{\pi}{2} + 2k\pi \][/tex]

Solving for [tex]\( t \)[/tex]:

[tex]\[ \pi t + \frac{\pi}{2} = \frac{\pi}{2} + 2k\pi \][/tex]
[tex]\[ \pi t = 2k\pi \][/tex]
[tex]\[ t = 2k \quad \text{for integers } k \][/tex]

Thus, [tex]\( t = 0, 2, 4, 6, \ldots \)[/tex].

For each of these [tex]\( t \)[/tex]-values, the corresponding height [tex]\( h(t) \)[/tex] is:

[tex]\[ h(t) = 0.5 \times 1 + 1 = 1.5 \][/tex]

Therefore, the points where the height [tex]\( h(t) \)[/tex] is at a maximum are:

[tex]\[ (0, 1.5), (2, 1.5), (4, 1.5), (6, 1.5), \ldots \][/tex]

On the graph, plot the points [tex]\( (0, 1.5) \)[/tex], [tex]\( (2, 1.5) \)[/tex], [tex]\( (4, 1.5) \)[/tex], [tex]\( (6, 1.5) \)[/tex], and so on.