From tech troubles to travel tips, IDNLearn.com has answers to all your questions. Get accurate and detailed answers to your questions from our knowledgeable and dedicated community members.
Sagot :
To determine the solubility of [tex]\(PbF_2\)[/tex] in 0.15 M [tex]\(NaF\)[/tex] at [tex]\(25^{\circ}C\)[/tex], we need to consider the dissolution and ion interaction of [tex]\(PbF_2\)[/tex] in solution. We'll go through the process step-by-step:
1. Expression for solubility product (Ksp) of [tex]\(PbF_2\)[/tex]:
The compound [tex]\(PbF_2\)[/tex] dissolves in water according to the following equation:
[tex]\[ PbF_2 (s) \rightleftharpoons Pb^{2+} (aq) + 2F^- (aq) \][/tex]
The solubility product constant, [tex]\(Ksp\)[/tex], for this equilibrium at [tex]\(25^{\circ}C\)[/tex] is [tex]\(3.3 \times 10^{-8}\)[/tex].
2. Effect of [tex]\(NaF\)[/tex] on the equilibrium:
The concentration of [tex]\(NaF\)[/tex] is given as 0.15 M. When [tex]\(NaF\)[/tex] dissociates, it produces [tex]\(Na^+\)[/tex] and [tex]\(F^-\)[/tex] ions:
[tex]\[ NaF (s) \rightleftharpoons Na^+ (aq) + F^- (aq) \][/tex]
Therefore, 0.15 M [tex]\(NaF\)[/tex] gives a [tex]\(F^-\)[/tex] ion concentration of 0.15 M. Since there are two [tex]\(F^-\)[/tex] ions produced by the solubility of one mole of [tex]\(PbF_2\)[/tex], the total [tex]\(F^-\)[/tex] concentration in the solution initially will be:
[tex]\[ [F^-] = 0.15 \times 2 = 0.30 \, \text{M} \][/tex]
3. Establishing the solubility equilibrium:
Let [tex]\(s\)[/tex] be the solubility of [tex]\(PbF_2\)[/tex] in moles per liter (M). At equilibrium, the concentrations will be:
[tex]\[ [Pb^{2+}] = s \][/tex]
[tex]\[ [F^-] \approx 0.30 \, \text{M} \, (\text{considering } s \ll 0.30) \][/tex]
4. Setting up the [tex]\(Ksp\)[/tex] expression:
Using the [tex]\(Ksp\)[/tex] for [tex]\(PbF_2\)[/tex]:
[tex]\[ Ksp = [Pb^{2+}] [F^-]^2 \][/tex]
Substituting the concentrations at equilibrium:
[tex]\[ 3.3 \times 10^{-8} = s \times (0.30)^2 \][/tex]
5. Solving for solubility, [tex]\(s\)[/tex]:
[tex]\[ 3.3 \times 10^{-8} = s \times 0.09 \][/tex]
[tex]\[ s = \frac{3.3 \times 10^{-8}}{0.09} \][/tex]
[tex]\[ s \approx 3.6667 \times 10^{-7} \, \text{M} \][/tex]
Hence, the solubility of [tex]\(PbF_2\)[/tex] in 0.15 M [tex]\(NaF\)[/tex] at [tex]\(25^{\circ}C\)[/tex] is approximately [tex]\(3.67 \times 10^{-7}\)[/tex] moles per liter.
1. Expression for solubility product (Ksp) of [tex]\(PbF_2\)[/tex]:
The compound [tex]\(PbF_2\)[/tex] dissolves in water according to the following equation:
[tex]\[ PbF_2 (s) \rightleftharpoons Pb^{2+} (aq) + 2F^- (aq) \][/tex]
The solubility product constant, [tex]\(Ksp\)[/tex], for this equilibrium at [tex]\(25^{\circ}C\)[/tex] is [tex]\(3.3 \times 10^{-8}\)[/tex].
2. Effect of [tex]\(NaF\)[/tex] on the equilibrium:
The concentration of [tex]\(NaF\)[/tex] is given as 0.15 M. When [tex]\(NaF\)[/tex] dissociates, it produces [tex]\(Na^+\)[/tex] and [tex]\(F^-\)[/tex] ions:
[tex]\[ NaF (s) \rightleftharpoons Na^+ (aq) + F^- (aq) \][/tex]
Therefore, 0.15 M [tex]\(NaF\)[/tex] gives a [tex]\(F^-\)[/tex] ion concentration of 0.15 M. Since there are two [tex]\(F^-\)[/tex] ions produced by the solubility of one mole of [tex]\(PbF_2\)[/tex], the total [tex]\(F^-\)[/tex] concentration in the solution initially will be:
[tex]\[ [F^-] = 0.15 \times 2 = 0.30 \, \text{M} \][/tex]
3. Establishing the solubility equilibrium:
Let [tex]\(s\)[/tex] be the solubility of [tex]\(PbF_2\)[/tex] in moles per liter (M). At equilibrium, the concentrations will be:
[tex]\[ [Pb^{2+}] = s \][/tex]
[tex]\[ [F^-] \approx 0.30 \, \text{M} \, (\text{considering } s \ll 0.30) \][/tex]
4. Setting up the [tex]\(Ksp\)[/tex] expression:
Using the [tex]\(Ksp\)[/tex] for [tex]\(PbF_2\)[/tex]:
[tex]\[ Ksp = [Pb^{2+}] [F^-]^2 \][/tex]
Substituting the concentrations at equilibrium:
[tex]\[ 3.3 \times 10^{-8} = s \times (0.30)^2 \][/tex]
5. Solving for solubility, [tex]\(s\)[/tex]:
[tex]\[ 3.3 \times 10^{-8} = s \times 0.09 \][/tex]
[tex]\[ s = \frac{3.3 \times 10^{-8}}{0.09} \][/tex]
[tex]\[ s \approx 3.6667 \times 10^{-7} \, \text{M} \][/tex]
Hence, the solubility of [tex]\(PbF_2\)[/tex] in 0.15 M [tex]\(NaF\)[/tex] at [tex]\(25^{\circ}C\)[/tex] is approximately [tex]\(3.67 \times 10^{-7}\)[/tex] moles per liter.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find clear answers at IDNLearn.com. Thanks for stopping by, and come back for more reliable solutions.