Find the best solutions to your problems with the help of IDNLearn.com. Discover reliable and timely information on any topic from our network of knowledgeable professionals.

Find the second derivative of the function

[tex]\[ f(x) = x(4x^2 - 1)^5 \][/tex]


Sagot :

To find the second derivative of the function [tex]\( f(x) = x(4x^2 - 1)^5 \)[/tex], we will start by finding the first derivative and then the second derivative. Here are the steps:

### Step 1: Find the first derivative [tex]\( f'(x) \)[/tex]

First, let’s apply the product rule, which states that if we have a function [tex]\( f(x) = u(x)v(x) \)[/tex], then its derivative is [tex]\( f'(x) = u'(x)v(x) + u(x)v'(x) \)[/tex].

In this case:
- [tex]\( u(x) = x \)[/tex]
- [tex]\( v(x) = (4x^2 - 1)^5 \)[/tex]

First, we find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex]:

- The derivative of [tex]\( u(x) = x \)[/tex] is [tex]\( u'(x) = 1 \)[/tex].
- To find the derivative of [tex]\( v(x) = (4x^2 - 1)^5 \)[/tex], we use the chain rule. Let [tex]\( g(x) = 4x^2 - 1 \)[/tex] and [tex]\( h(g) = g^5 \)[/tex]. Then

[tex]\[ v'(x) = \frac{d}{dx}[(4x^2 - 1)^5] = 5(4x^2 - 1)^4 \cdot \frac{d}{dx}(4x^2 - 1) \][/tex]
[tex]\[ \frac{d}{dx}(4x^2 - 1) = 8x \][/tex]
Therefore,
[tex]\[ v'(x) = 5(4x^2 - 1)^4 \cdot 8x = 40x(4x^2 - 1)^4 \][/tex]

Now, applying the product rule:
[tex]\[ f'(x) = u'(x)v(x) + u(x)v'(x) \][/tex]
[tex]\[ f'(x) = 1 \cdot (4x^2 - 1)^5 + x \cdot 40x(4x^2 - 1)^4 \][/tex]
[tex]\[ f'(x) = (4x^2 - 1)^5 + 40x^2(4x^2 - 1)^4 \][/tex]

We can combine the terms:
[tex]\[ f'(x) = 40x^2(4x^2 - 1)^4 + (4x^2 - 1)^5 \][/tex]

### Step 2: Find the second derivative [tex]\( f''(x) \)[/tex]

Now, we need to differentiate [tex]\( f'(x) \)[/tex] to find the second derivative [tex]\( f''(x) \)[/tex].

[tex]\[ f'(x) = 40x^2(4x^2 - 1)^4 + (4x^2 - 1)^5 \][/tex]

We again apply the product rule and chain rule where necessary.

For the term [tex]\( 40x^2(4x^2 - 1)^4 \)[/tex]:
[tex]\[ \frac{d}{dx}[40x^2(4x^2 - 1)^4] = 40 \cdot \frac{d}{dx}[x^2 \cdot (4x^2 - 1)^4] \][/tex]
Let [tex]\( u(x) = x^2 \)[/tex] and [tex]\( v(x) = (4x^2 - 1)^4 \)[/tex]:
[tex]\[ \frac{d}{dx}[x^2(4x^2 - 1)^4] = x^2 \cdot \frac{d}{dx}[(4x^2 - 1)^4] + (4x^2 - 1)^4 \cdot \frac{d}{dx}[x^2] \][/tex]

We already found:
[tex]\[ \frac{d}{dx}[(4x^2 - 1)^4] = 16x(4x^2-1)^3 \][/tex]
[tex]\[ \frac{d}{dx}[x^2] = 2x \][/tex]

Thus,
[tex]\[ \frac{d}{dx}[x^2(4x^2 - 1)^4] = x^2 \cdot 16x(4x^2 - 1)^3 + 2x(4x^2 - 1)^4 \][/tex]
[tex]\[ = 16x^3(4x^2 - 1)^3 + 2x(4x^2 - 1)^4 \][/tex]
Multiply by 40:
[tex]\[ 40 \left(16x^3(4x^2 - 1)^3 + 2x(4x^2 - 1)^4\right) = 640x^3(4x^2 - 1)^3 + 80x(4x^2 - 1)^4 \][/tex]

Next, for the term [tex]\( (4x^2 - 1)^5 \)[/tex]:
[tex]\[ \frac{d}{dx}[(4x^2 - 1)^5] = 20x(4x^2 - 1)^4 \][/tex]

Putting it all together:
[tex]\[ f''(x) = 640x^3(4x^2 - 1)^3 + 80x(4x^2 - 1)^4 + 20x(4x^2 - 1)^4 \][/tex]

Combine like terms:
[tex]\[ f''(x) = 640x^3(4x^2 - 1)^3 + 100x(4x^2 - 1)^4 \][/tex]

Thus, the second derivative of the function [tex]\( f(x) = x(4x^2 - 1)^5 \)[/tex] is:
[tex]\[ f''(x) = 1280x^3(4x^2 - 1)^3 + 120x(4x^2 - 1)^4 \][/tex]