Join IDNLearn.com and start exploring the answers to your most pressing questions. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
To determine the relationship between the functions [tex]\( f(x) = 2^x \)[/tex] and [tex]\( g(x) = \left( \frac{1}{2} \right)^x \)[/tex] based on the given table, let's examine the data points provided:
[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x) = 2^x & g(x) = \left( \frac{1}{2} \right)^x \\ \hline 2 & 4 & \frac{1}{4} \\ \hline 1 & 2 & \frac{1}{2} \\ \hline 0 & 1 & 1 \\ \hline -1 & \frac{1}{2} & 2 \\ \hline -2 & \frac{1}{4} & 4 \\ \hline \end{array} \][/tex]
1. Reflection Over the x-axis:
For two functions to be reflections over the [tex]\( x \)[/tex]-axis, [tex]\( f(x) \)[/tex] would need to be the negative of [tex]\( g(x) \)[/tex] for every [tex]\( x \)[/tex]. For instance, [tex]\( f(x) = -g(x) \)[/tex]. But here, we see that [tex]\( 2^x \)[/tex] and [tex]\( \left( \frac{1}{2} \right)^x \)[/tex] do not satisfy this criterion. For example, [tex]\( f(2) = 4 \)[/tex] and [tex]\( g(2) = \frac{1}{4} \)[/tex], which are not negatives of each other.
2. Reflection Over the y-axis:
For two functions to be reflections over the [tex]\( y \)[/tex]-axis, [tex]\( f(x) \)[/tex] would need to be equal to [tex]\( g(-x) \)[/tex] for every [tex]\( x \)[/tex]. Check the table: [tex]\( f(2) = 4 \)[/tex] and [tex]\( g(-2) = 4 \)[/tex]; [tex]\( f(1) = 2 \)[/tex] and [tex]\( g(-1) = 2 \)[/tex]; [tex]\( f(0) = 1 \)[/tex] and [tex]\( g(0) = 1 \)[/tex]; [tex]\( f(-1) = \frac{1}{2} \)[/tex] and [tex]\( g(1) = \frac{1}{2} \)[/tex]; [tex]\( f(-2) = \frac{1}{4} \)[/tex] and [tex]\( g(2) = \frac{1}{4} \)[/tex]. This shows that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are indeed reflections over the y-axis.
3. Increasing vs. Decreasing:
A function [tex]\( f(x) \)[/tex] is increasing if as [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] also increases. Similarly, a function [tex]\( g(x) \)[/tex] is decreasing if as [tex]\( x \)[/tex] increases, [tex]\( g(x) \)[/tex] decreases. Check the values: as [tex]\( x \)[/tex] increases, [tex]\( f(x) = 2^x \)[/tex] increases (4, 2, 1, 1/2, 1/4) and [tex]\( g(x) = \left( \frac{1}{2} \right)^x \)[/tex] decreases (1/4, 1/2, 1, 2, 4). Therefore, [tex]\( f(x) \)[/tex] is increasing and [tex]\( g(x) \)[/tex] is decreasing, not the other way around.
4. Initial Values:
The initial value usually refers to the function value at [tex]\( x = 0 \)[/tex]. Both [tex]\( f(x) = 2^0 = 1 \)[/tex] and [tex]\( g(x) = \left( \frac{1}{2} \right)^0 = 1 \)[/tex] have the same initial value.
Given these observations, the correct conclusion is:
The functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are reflections over the y-axis.
[tex]\[ \begin{array}{|c|c|c|} \hline x & f(x) = 2^x & g(x) = \left( \frac{1}{2} \right)^x \\ \hline 2 & 4 & \frac{1}{4} \\ \hline 1 & 2 & \frac{1}{2} \\ \hline 0 & 1 & 1 \\ \hline -1 & \frac{1}{2} & 2 \\ \hline -2 & \frac{1}{4} & 4 \\ \hline \end{array} \][/tex]
1. Reflection Over the x-axis:
For two functions to be reflections over the [tex]\( x \)[/tex]-axis, [tex]\( f(x) \)[/tex] would need to be the negative of [tex]\( g(x) \)[/tex] for every [tex]\( x \)[/tex]. For instance, [tex]\( f(x) = -g(x) \)[/tex]. But here, we see that [tex]\( 2^x \)[/tex] and [tex]\( \left( \frac{1}{2} \right)^x \)[/tex] do not satisfy this criterion. For example, [tex]\( f(2) = 4 \)[/tex] and [tex]\( g(2) = \frac{1}{4} \)[/tex], which are not negatives of each other.
2. Reflection Over the y-axis:
For two functions to be reflections over the [tex]\( y \)[/tex]-axis, [tex]\( f(x) \)[/tex] would need to be equal to [tex]\( g(-x) \)[/tex] for every [tex]\( x \)[/tex]. Check the table: [tex]\( f(2) = 4 \)[/tex] and [tex]\( g(-2) = 4 \)[/tex]; [tex]\( f(1) = 2 \)[/tex] and [tex]\( g(-1) = 2 \)[/tex]; [tex]\( f(0) = 1 \)[/tex] and [tex]\( g(0) = 1 \)[/tex]; [tex]\( f(-1) = \frac{1}{2} \)[/tex] and [tex]\( g(1) = \frac{1}{2} \)[/tex]; [tex]\( f(-2) = \frac{1}{4} \)[/tex] and [tex]\( g(2) = \frac{1}{4} \)[/tex]. This shows that [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are indeed reflections over the y-axis.
3. Increasing vs. Decreasing:
A function [tex]\( f(x) \)[/tex] is increasing if as [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] also increases. Similarly, a function [tex]\( g(x) \)[/tex] is decreasing if as [tex]\( x \)[/tex] increases, [tex]\( g(x) \)[/tex] decreases. Check the values: as [tex]\( x \)[/tex] increases, [tex]\( f(x) = 2^x \)[/tex] increases (4, 2, 1, 1/2, 1/4) and [tex]\( g(x) = \left( \frac{1}{2} \right)^x \)[/tex] decreases (1/4, 1/2, 1, 2, 4). Therefore, [tex]\( f(x) \)[/tex] is increasing and [tex]\( g(x) \)[/tex] is decreasing, not the other way around.
4. Initial Values:
The initial value usually refers to the function value at [tex]\( x = 0 \)[/tex]. Both [tex]\( f(x) = 2^0 = 1 \)[/tex] and [tex]\( g(x) = \left( \frac{1}{2} \right)^0 = 1 \)[/tex] have the same initial value.
Given these observations, the correct conclusion is:
The functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are reflections over the y-axis.
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.