Explore IDNLearn.com's extensive Q&A database and find the answers you're looking for. Get accurate and detailed answers to your questions from our dedicated community members who are always ready to help.

Select the correct answer from each drop-down menu.

Given: [tex]$\triangle ABC$[/tex] with altitude [tex]$h$[/tex].

Two right triangles are formed: one with side lengths [tex]$c + r$[/tex], [tex]$h$[/tex], and [tex]$b$[/tex], and one with side lengths [tex]$r$[/tex], [tex]$h$[/tex], and [tex]$a$[/tex].

Carson starts the proof of the law of cosines with [tex]$\sin (A) = \frac{h}{b}$[/tex] by the definition of the sine ratio and [tex]$\cos (A) = \frac{c + r}{b}$[/tex] by the definition of the cosine ratio.

What are the next steps in the proof?

Use the [tex]$\square$[/tex] transitive property of equality to rewrite each trigonometric equation in terms of the numerator.

Then, Carson can write an expression for side [tex]$\square$[/tex] in terms of [tex]$\square$[/tex].

Next, he can use the [tex]$\square$[/tex] to relate [tex]$a, b, c$[/tex], and [tex]$A$[/tex].


Sagot :

Carson starts the proof of the law of cosines using the definitions of sine and cosine. Here's a detailed step-by-step solution for completing the next parts of the proof:

1. Transitive Property of Equality:
- Transitive property states that if [tex]\(a = b\)[/tex] and [tex]\(b = c\)[/tex], then [tex]\(a = c\)[/tex]. This will be used to rewrite each trigonometric equation in terms of the numerator.

So, we start with:
[tex]\[ \sin(A) = \frac{h}{b} \][/tex]
and
[tex]\[ \cos(A) = \frac{c + r}{b} \][/tex]

Using the transitive property of equality to rewrite in terms of [tex]\(h\)[/tex] and [tex]\(c+r\)[/tex]:
[tex]\[ h = b \sin(A) \][/tex]
and
[tex]\[ c + r = b \cos(A) \][/tex]

2. Expression for Side [tex]\(r\)[/tex]:
- Next, we need to find the expression for side [tex]\( r \)[/tex]. We relate [tex]\( r \)[/tex] in terms of [tex]\( a, h, \)[/tex] and [tex]\(\cos(A)\)[/tex]:
[tex]\[ r = a \cos(A) \][/tex]

3. Relate [tex]\(a, b, c,\)[/tex] and [tex]\(A\)[/tex]:
- Use the Pythagorean theorem in both right triangles formed by the altitude [tex]\( h \)[/tex]:

For the triangle with side lengths [tex]\(r, h,\)[/tex] and [tex]\(a\)[/tex]:
[tex]\[ a^2 = r^2 + h^2 \][/tex]

Substitute [tex]\(r = a \cos(A)\)[/tex]:
[tex]\[ a^2 = (a \cos(A))^2 + h^2 \][/tex]
[tex]\[ a^2 = a^2 \cos^2(A) + h^2 \][/tex]

For the triangle with side lengths [tex]\(c + r, h,\)[/tex] and [tex]\(b\)[/tex]:
[tex]\[ b^2 = (c + r)^2 + h^2 \][/tex]

Substitute [tex]\(r = a \cos(A)\)[/tex]:
[tex]\[ b^2 = (c + a \cos(A))^2 + h^2 \][/tex]
[tex]\[ b^2 = c^2 + 2ac \cos(A) + a^2 \cos^2(A) + h^2 \][/tex]

4. Combining the Results:
- Finally, since [tex]\( h^2 = a^2 - a^2 \cos^2(A) \)[/tex], we substitute it into the equation:
[tex]\[ h^2 = a^2 \sin^2(A) \][/tex]
- Adding this to [tex]\( b^2 \)[/tex], we get:
[tex]\[ b^2 = c^2 + 2ac \cos(A) + a^2 \cos^2(A) + a^2 \sin^2(A) \][/tex]
- Simplifying using the trigonometric identity [tex]\( \cos^2(A) + \sin^2(A) = 1 \)[/tex]:
[tex]\[ b^2 = c^2 + 2ac \cos(A) + a^2 ( \cos^2(A) + \sin^2(A)) \][/tex]
[tex]\[ b^2 = c^2 + 2ac \cos(A) + a^2 \][/tex]
This is the law of cosines.

Thus, Carson successfully completes the proof using these steps.