IDNLearn.com provides a platform for sharing and gaining valuable knowledge. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
Answer:
Following are the responses to the given choices:
Explanation:
For point a:
Using the acid and base which are strong so,
moles of [tex]H^+[/tex] (from[tex]HNO_3[/tex])
[tex]= 24.9\ mL \times 0.100\ M \\\\= \frac{24.9}{1000\ L} \times 0.100\ M \\\\= 2.49 \times 10^{-3} \ mol[/tex]
moles of [tex]OH^{-}[/tex] (from [tex]KOH[/tex])
[tex]= 25.0\ mL \times 0.100\ M \\\\= \frac{25.0}{1000 \ L} \times 0.100 \ M \\\\\= 2.50 \times 10^{-3}\ mol[/tex]
[tex]1\ mol H^{+} \ neutralizes\ 1\ mol\ of\ OH^{-}[/tex]
So, [tex](2.50 \times 10^{-3} mol - 2.49 \times 10^{-3} mol)[/tex] i.e. [tex]1 \times 10^{-5}[/tex] mol of [tex]OH^-[/tex] in excess in total volume [tex](24.9+25.0) \ mL = 49.9 \ mL[/tex] i.e. concentration of [tex]OH^- = 2 \times 10^{-4}\ M[/tex]
[tex]p[OH^{-}] = -\log [OH^{-}] = -\log [2 \times 10^{-4}\ mol] = 3.70[/tex]
Since, [tex]pH + pOH = 14,[/tex]
so,
[tex]\to pH = 14- pOH = 14- 3.70 = 10.30[/tex]
For point b:
moles of [tex]OH^-[/tex] = from point a [tex]= 2.50 \times 10^{-3} \ mol[/tex]
moles of [tex]H^+[/tex](from[tex]HNO_3[/tex]):
[tex]= 25.1 mL \times 0.100 M\\\\ = \frac{25.1}{1000}\ L \times 0.100 \ M\\\\ = 2.51\times 10^{-3} \ mol[/tex]
1 mol [tex]H^+[/tex] neutralizes 1 mol of [tex]OH^-[/tex]
So, [tex](2.51 \times 10^{-3}\ mol - 2.50 \times 10^{-3}\ mol)[/tex] i.e. [tex]1 \times 10^{-5} \ mol \ of\ H^+[/tex] in excess in the total volume of [tex](25.1+25.0) \ mL = 50.1\ mL[/tex] i.e. concentration of[tex]H^+ = 2 \times 10^{-4}\ M[/tex]
Hence, [tex]pH = -\log [H^+] = -\log[2 \times 10^{-4}] = 3.70[/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.