Discover a wealth of information and get your questions answered on IDNLearn.com. Our community provides accurate and timely answers to help you understand and solve any issue.

General solution of: (1-xy)^-2 dx + [y^2 + x^2 (1-xy)^-2]dy = 0


show two solution on your answer

nonsense answer deleted​


Sagot :

✒️MATHEMATICS

[tex] \Large \bold{SOLUTION\ 1:} [/tex]

[tex] \small \begin{array}{l} \text{First, we need to check if the given differential} \\ \text{equation is exact.} \\ \\ (1-xy)^{-2} dx + \big[y^2 + x^2 (1-xy)^{-2}\big]dy = 0 \\ \\ \dfrac{dx}{(1-xy)^2} + \left[y^2 + \dfrac{x^2}{(1-xy)^2}\right]dy = 0 \\ \\ \quad M(x, y) dx + N(x, y) dy = 0 \end{array} [/tex]

[tex] \small \begin{array}{l l}\tt\: M(x,y) = \dfrac{1}{(1 - xy)^2}, & N(x,y) = y^2 + \dfrac{x^2}{(1-xy)^2}\\ \\\tt \dfrac{\partial M}{\partial y} = \dfrac{-2(-x)}{(1 - xy)^3}, & \dfrac{\partial N}{\partial x} = \dfrac{2x}{(1 - xy)^2} + \dfrac{-2(-y)x^2}{(1 - xy)^3} \\ \\\tt \dfrac{\partial M}{\partial y} = \dfrac{2x}{(1 - xy)^3}, & \dfrac{\partial N}{\partial x} = \dfrac{2x(1 - xy)+2x^2y}{(1 - xy)^3} \\ \\\tt \: & \dfrac{\partial N}{\partial x} = \dfrac{2x}{(1 - xy)^3} \end{array} [/tex]

[tex] \small \begin{array}{l} \tt\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x} \implies \text{Differential equation is exact.} \\ \\\tt \dfrac{\partial F}{\partial x} = M(x, y) = \dfrac{1}{(1 - xy)^2} \\ \tt\displaystyle F(x, y) = \int \dfrac{1}{(1 - xy)^2} \partial x = -\dfrac{1}{y} \int \dfrac{1}{(1 - xy)^2}(-y)\partial x \\ \\ \tt\:F(x, y) = \dfrac{1}{y(1 - xy)} + h(y) \\ \\ \tt\dfrac{\partial F}{\partial y} = N(x, y) = y^2 + \dfrac{x^2}{(1-xy)^2} \\ \\\tt \dfrac{\partial}{\partial y}\left[\dfrac{1}{y(1 - xy)} + h(y)\right] = y^2 + \dfrac{x^2}{(1-xy)^2} \\ \\ \tt-\dfrac{1 - xy + y(-x)}{y^2(1 - xy)^2} + h'(y) = y^2 + \dfrac{x^2}{(1-xy)^2} \\ \\ \tt-\dfrac{1 - 2xy}{y^2(1 - xy)^2} + h'(y) = y^2 + \dfrac{x^2}{(1-xy)^2} \\ \\ h'(y) = y^2 + \dfrac{x^2}{(1-xy)^2} + \dfrac{1 - 2xy}{y^2(1 - xy)^2} \\ \\ \tt\:h'(y) = y^2 + \dfrac{x^2y^2 - 2xy + 1}{y^2(1-xy)^2} = y^2 + \dfrac{1}{y^2} \\ \\ h(y) = \dfrac{y^3}{3} - \dfrac{1}{y} + C \\ \\ \tt\text{Substituting to }F(x,y),\text{we get} \\ \\ \dfrac{1}{y(1 - xy)} + \dfrac{y^3}{3} - \dfrac{1}{y} = C \\ \\ \quad \quad \text{or} \\ \\ \tt\red{\boxed{\dfrac{x}{1 - xy} + \dfrac{y^3}{3} = C} \Longleftarrow \textit{Answer}} \end{array} [/tex]

[tex] \Large \bold{SOLUTION\ 2:} [/tex]

[tex] \small \begin{array}{l} \tt\text{Since we already know that the equation is exact,} \\ \text{we can then continue solving for the solution by} \\ \text{inspection method or by algebraic manipulation.} \\ \\ \tt(1-xy)^{-2} dx + \big[y^2 + x^2 (1-xy)^{-2}\big]dy = 0 \\ \\ \tt\dfrac{dx}{(1-xy)^2} + \left[y^2 + \dfrac{x^2}{(1-xy)^2}\right]dy = 0 \\ \\ \tt\dfrac{dx}{(1-xy)^2} + y^2 dy + \dfrac{x^2}{(1-xy)^2} dy = 0 \\ \\ \tt\dfrac{dx + x^2dy}{(1-xy)^2} + y^2 dy = 0 \\ \\ \tt\text{Divide both numerator and denominator of the} \\ \tt\text{fraction by }x^2. \end{array} [/tex]

[tex] \small \begin{array}{c}\tt \dfrac{\dfrac{1}{x^2}dx + dy}{\dfrac{(1-xy)^2}{x^2}} + y^2 dy = 0 \\ \tt\\ \tt\dfrac{\dfrac{1}{x^2}dx + dy}{\left(\dfrac{1}{x}-y\right)^2} + y^2 dy = 0 \\ \\ \tt-\dfrac{\left(-\dfrac{1}{x^2}dx - dy\right)}{\left(\dfrac{1}{x}-y\right)^2} + y^2 dy = 0 \\ \\ \tt\displaystyle {\large{\int}} -\frac{d\left(\dfrac{1}{x}-y\right)}{\left(\dfrac{1}{x}-y\right)^2} + \int y^2 dy = \int 0 \\ \\ \tt\implies\tt \dfrac{1}{\dfrac{1}{x}-y} + \dfrac{y^3}{3} = C \\ \\\text{or} \\ \\ \tt\red{\boxed{\dfrac{x}{1 - xy} + \dfrac{y^3}{3} = C} \Longleftarrow \textit{Answer}} \end{array} [/tex]

#CarryOnLearning

#BrainlyMathKnower