Explore IDNLearn.com to discover insightful answers from experts and enthusiasts alike. Get accurate and timely answers to your queries from our extensive network of experienced professionals.

What is the recursive rule for the geometric sequence [tex]\( f(n) = 13(1.3)^{n-1} \)[/tex]?

A. [tex]\( f(1) = 13, \; f(n-1) = 1.3 \cdot f(n), \; n \geq 2 \)[/tex]

B. [tex]\( f(1) = 1.3, \; f(n-1) = 13 \cdot f(n), \; n \geq 2 \)[/tex]

C. [tex]\( f(1) = 13, \; f(n) = 1.3 \cdot f(n-1), \; n \geq 2 \)[/tex]

D. [tex]\( f(1) = 1.3, \; f(n) = 13 \cdot f(n-1), \; n \geq 2 \)[/tex]


Sagot :

To find the recursive rule for the given geometric sequence [tex]\( f(n) = 13 (1.3)^{n-1} \)[/tex], let's analyze each part of the sequence step-by-step.

1. Initial Term:
The initial term [tex]\( f(1) \)[/tex] is given by plugging in [tex]\( n = 1 \)[/tex] into the formula:
[tex]\[ f(1) = 13 \cdot (1.3)^{1-1} = 13 \cdot (1.3)^0 = 13 \cdot 1 = 13 \][/tex]
So, we have:
[tex]\[ f(1) = 13 \][/tex]

2. Recursive Relationship:
A geometric sequence has a common ratio between consecutive terms. For this sequence, the common ratio [tex]\( r \)[/tex] can be determined from the formula:
[tex]\[ f(n) = 13 \cdot (1.3)^{n-1} \][/tex]
To find the relationship between [tex]\( f(n) \)[/tex] and [tex]\( f(n-1) \)[/tex], consider:
[tex]\[ f(n-1) = 13 \cdot (1.3)^{(n-1)-1} = 13 \cdot (1.3)^{n-2} \][/tex]
To express [tex]\( f(n) \)[/tex] using [tex]\( f(n-1) \)[/tex]:
\begin{align}
f(n) &= 13 \cdot (1.3)^{n-1} \\
&= 13 \cdot (1.3)^{n-2} \cdot (1.3)^1 \\
&= (13 \cdot (1.3)^{n-2}) \cdot 1.3 \\
&= f(n-1) \cdot 1.3
\end{align
}
Therefore, the recursive relationship is:
[tex]\[ f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]

Combining both the initial term and the recursive relationship, the recursive rule for the geometric sequence is:
[tex]\[ f(1) = 13, \quad f(n) = 1.3 \cdot f(n-1) \quad \text{for} \quad n \geq 2 \][/tex]

Thus, the correct choice is:
\[
f(1)=13, \quad f(n)=1.3 \cdot f(n-1), \quad n\geq 2
\