IDNLearn.com: Your trusted source for finding accurate and reliable answers. Our community is here to provide detailed and trustworthy answers to any questions you may have.
Sagot :
Let's solve the problem step by step.
### Given Data:
- Wavelength of sodium absorption line, [tex]\(\lambda = 589 \, \text{nm}\)[/tex]
- Speed of light in a vacuum, [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Planck's constant, [tex]\(h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
### Step-by-Step Solution:
1. Convert the wavelength from nanometers to meters:
- [tex]\(1 \, \text{nm} = 10^{-9} \, \text{m}\)[/tex]
- [tex]\(\lambda = 589 \, \text{nm} = 589 \times 10^{-9} \, \text{m} = 5.89 \times 10^{-7} \, \text{m}\)[/tex]
2. Calculate the frequency ([tex]\( \nu \)[/tex]) of the light using the formula:
[tex]\[ \nu = \frac{c}{\lambda} \][/tex]
- Plug in the values:
[tex]\[ \nu = \frac{3.00 \times 10^8 \, \text{m/s}}{5.89 \times 10^{-7} \, \text{m}} \][/tex]
- Solving for [tex]\(\nu\)[/tex]:
[tex]\[ \nu = 5.0933786078098475 \times 10^{14} \, \text{Hz} \][/tex]
3. Calculate the energy (E) of the photon using Planck's equation:
[tex]\[ E = h \nu \][/tex]
- Plug in the values:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (5.0933786078098475 \times 10^{14} \, \text{Hz}) \][/tex]
- Solving for [tex]\(E\)[/tex]:
[tex]\[ E = 3.374872665534805 \times 10^{-19} \, \text{J} \][/tex]
### Conclusion:
The energy of the sodium absorption line at [tex]\(589 \, \text{nm}\)[/tex] is approximately:
[tex]\[ 3.37 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{3.37 \times 10^{-19} \, \text{J}} \][/tex]
Which corresponds to option C.
### Given Data:
- Wavelength of sodium absorption line, [tex]\(\lambda = 589 \, \text{nm}\)[/tex]
- Speed of light in a vacuum, [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Planck's constant, [tex]\(h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
### Step-by-Step Solution:
1. Convert the wavelength from nanometers to meters:
- [tex]\(1 \, \text{nm} = 10^{-9} \, \text{m}\)[/tex]
- [tex]\(\lambda = 589 \, \text{nm} = 589 \times 10^{-9} \, \text{m} = 5.89 \times 10^{-7} \, \text{m}\)[/tex]
2. Calculate the frequency ([tex]\( \nu \)[/tex]) of the light using the formula:
[tex]\[ \nu = \frac{c}{\lambda} \][/tex]
- Plug in the values:
[tex]\[ \nu = \frac{3.00 \times 10^8 \, \text{m/s}}{5.89 \times 10^{-7} \, \text{m}} \][/tex]
- Solving for [tex]\(\nu\)[/tex]:
[tex]\[ \nu = 5.0933786078098475 \times 10^{14} \, \text{Hz} \][/tex]
3. Calculate the energy (E) of the photon using Planck's equation:
[tex]\[ E = h \nu \][/tex]
- Plug in the values:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (5.0933786078098475 \times 10^{14} \, \text{Hz}) \][/tex]
- Solving for [tex]\(E\)[/tex]:
[tex]\[ E = 3.374872665534805 \times 10^{-19} \, \text{J} \][/tex]
### Conclusion:
The energy of the sodium absorption line at [tex]\(589 \, \text{nm}\)[/tex] is approximately:
[tex]\[ 3.37 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{3.37 \times 10^{-19} \, \text{J}} \][/tex]
Which corresponds to option C.
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.