Get detailed and reliable answers to your questions with IDNLearn.com. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
Let's solve the problem step by step.
### Given Data:
- Wavelength of sodium absorption line, [tex]\(\lambda = 589 \, \text{nm}\)[/tex]
- Speed of light in a vacuum, [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Planck's constant, [tex]\(h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
### Step-by-Step Solution:
1. Convert the wavelength from nanometers to meters:
- [tex]\(1 \, \text{nm} = 10^{-9} \, \text{m}\)[/tex]
- [tex]\(\lambda = 589 \, \text{nm} = 589 \times 10^{-9} \, \text{m} = 5.89 \times 10^{-7} \, \text{m}\)[/tex]
2. Calculate the frequency ([tex]\( \nu \)[/tex]) of the light using the formula:
[tex]\[ \nu = \frac{c}{\lambda} \][/tex]
- Plug in the values:
[tex]\[ \nu = \frac{3.00 \times 10^8 \, \text{m/s}}{5.89 \times 10^{-7} \, \text{m}} \][/tex]
- Solving for [tex]\(\nu\)[/tex]:
[tex]\[ \nu = 5.0933786078098475 \times 10^{14} \, \text{Hz} \][/tex]
3. Calculate the energy (E) of the photon using Planck's equation:
[tex]\[ E = h \nu \][/tex]
- Plug in the values:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (5.0933786078098475 \times 10^{14} \, \text{Hz}) \][/tex]
- Solving for [tex]\(E\)[/tex]:
[tex]\[ E = 3.374872665534805 \times 10^{-19} \, \text{J} \][/tex]
### Conclusion:
The energy of the sodium absorption line at [tex]\(589 \, \text{nm}\)[/tex] is approximately:
[tex]\[ 3.37 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{3.37 \times 10^{-19} \, \text{J}} \][/tex]
Which corresponds to option C.
### Given Data:
- Wavelength of sodium absorption line, [tex]\(\lambda = 589 \, \text{nm}\)[/tex]
- Speed of light in a vacuum, [tex]\(c = 3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Planck's constant, [tex]\(h = 6.626 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
### Step-by-Step Solution:
1. Convert the wavelength from nanometers to meters:
- [tex]\(1 \, \text{nm} = 10^{-9} \, \text{m}\)[/tex]
- [tex]\(\lambda = 589 \, \text{nm} = 589 \times 10^{-9} \, \text{m} = 5.89 \times 10^{-7} \, \text{m}\)[/tex]
2. Calculate the frequency ([tex]\( \nu \)[/tex]) of the light using the formula:
[tex]\[ \nu = \frac{c}{\lambda} \][/tex]
- Plug in the values:
[tex]\[ \nu = \frac{3.00 \times 10^8 \, \text{m/s}}{5.89 \times 10^{-7} \, \text{m}} \][/tex]
- Solving for [tex]\(\nu\)[/tex]:
[tex]\[ \nu = 5.0933786078098475 \times 10^{14} \, \text{Hz} \][/tex]
3. Calculate the energy (E) of the photon using Planck's equation:
[tex]\[ E = h \nu \][/tex]
- Plug in the values:
[tex]\[ E = (6.626 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (5.0933786078098475 \times 10^{14} \, \text{Hz}) \][/tex]
- Solving for [tex]\(E\)[/tex]:
[tex]\[ E = 3.374872665534805 \times 10^{-19} \, \text{J} \][/tex]
### Conclusion:
The energy of the sodium absorption line at [tex]\(589 \, \text{nm}\)[/tex] is approximately:
[tex]\[ 3.37 \times 10^{-19} \, \text{J} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{3.37 \times 10^{-19} \, \text{J}} \][/tex]
Which corresponds to option C.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.