IDNLearn.com: Your reliable source for finding expert answers. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.
Sagot :
To solve the given problem step-by-step, let's break it down into its parts a), b), c), and d).
(a) Find the inverse of [tex]\( f \)[/tex].
To find the inverse of the function [tex]\( f(x) = 4x + 3 \)[/tex]:
1. Start with the equation [tex]\( y = 4x + 3 \)[/tex].
2. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]: [tex]\( y = 4x + 3 \)[/tex].
3. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y - 3 = 4x \][/tex]
[tex]\[ x = \frac{y - 3}{4} \][/tex]
4. Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] and [tex]\( x \)[/tex] with [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{x - 3}{4} \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 3}{4} \][/tex]
(b) State the domain and range of [tex]\( f \)[/tex].
For the function [tex]\( f(x) = 4x + 3 \)[/tex]:
- The domain of [tex]\( f \)[/tex]: Since [tex]\( f(x) \)[/tex] is a linear function, [tex]\( x \)[/tex] can be any real number. Thus, the domain is:
[tex]\[ \text{Domain of } f: \text{all real numbers} \][/tex]
- The range of [tex]\( f \)[/tex]: Because the function is a linear polynomial with a non-zero slope, it can take any real value as output. Thus, the range is:
[tex]\[ \text{Range of } f: \text{all real numbers} \][/tex]
(c) State the domain and range of [tex]\( f^{-1} \)[/tex].
For the inverse function [tex]\( f^{-1}(x) = \frac{x - 3}{4} \)[/tex]:
- The domain of [tex]\( f^{-1} \)[/tex]: The domain of the inverse function is the range of the original function [tex]\( f \)[/tex]. Since the range of [tex]\( f \)[/tex] is all real numbers, the domain of [tex]\( f^{-1} \)[/tex] is:
[tex]\[ \text{Domain of } f^{-1}: \text{all real numbers} \][/tex]
- The range of [tex]\( f^{-1} \)[/tex]: The range of the inverse function is the domain of the original function [tex]\( f \)[/tex]. Since the domain of [tex]\( f \)[/tex] is all real numbers, the range of [tex]\( f^{-1} \)[/tex] is:
[tex]\[ \text{Range of } f^{-1}: \text{all real numbers} \][/tex]
(d) Graph [tex]\( f \)[/tex], [tex]\( f^{-1} \)[/tex], and [tex]\( y = x \)[/tex] on the same set of axes.
To graph these functions:
1. Graph of [tex]\( f(x) = 4x + 3 \)[/tex]:
- It's a straight line with a slope of 4 and y-intercept of 3.
- Passes through points like [tex]\( (0, 3) \)[/tex] and [tex]\( (1, 7) \)[/tex].
2. Graph of [tex]\( f^{-1}(x) = \frac{x - 3}{4} \)[/tex]:
- It's a straight line with a slope of [tex]\( \frac{1}{4} \)[/tex] and y-intercept of [tex]\( -\frac{3}{4} \)[/tex].
- Passes through points like [tex]\( (3, 0) \)[/tex] and [tex]\( (7, 1) \)[/tex].
3. Graph of [tex]\( y = x \)[/tex]:
- It's the identity line that passes through points like [tex]\( (0, 0) \)[/tex] and [tex]\( (1, 1) \)[/tex].
These three lines should intersect at the points where the original function f and its inverse reflect across the line [tex]\( y = x \)[/tex].
So, the solution to the initial question is:
[tex]\[ f^{-1}(x) = \frac{x - 3}{4} \][/tex]
(a) Find the inverse of [tex]\( f \)[/tex].
To find the inverse of the function [tex]\( f(x) = 4x + 3 \)[/tex]:
1. Start with the equation [tex]\( y = 4x + 3 \)[/tex].
2. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]: [tex]\( y = 4x + 3 \)[/tex].
3. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y - 3 = 4x \][/tex]
[tex]\[ x = \frac{y - 3}{4} \][/tex]
4. Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] and [tex]\( x \)[/tex] with [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{x - 3}{4} \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = \frac{x - 3}{4} \][/tex]
(b) State the domain and range of [tex]\( f \)[/tex].
For the function [tex]\( f(x) = 4x + 3 \)[/tex]:
- The domain of [tex]\( f \)[/tex]: Since [tex]\( f(x) \)[/tex] is a linear function, [tex]\( x \)[/tex] can be any real number. Thus, the domain is:
[tex]\[ \text{Domain of } f: \text{all real numbers} \][/tex]
- The range of [tex]\( f \)[/tex]: Because the function is a linear polynomial with a non-zero slope, it can take any real value as output. Thus, the range is:
[tex]\[ \text{Range of } f: \text{all real numbers} \][/tex]
(c) State the domain and range of [tex]\( f^{-1} \)[/tex].
For the inverse function [tex]\( f^{-1}(x) = \frac{x - 3}{4} \)[/tex]:
- The domain of [tex]\( f^{-1} \)[/tex]: The domain of the inverse function is the range of the original function [tex]\( f \)[/tex]. Since the range of [tex]\( f \)[/tex] is all real numbers, the domain of [tex]\( f^{-1} \)[/tex] is:
[tex]\[ \text{Domain of } f^{-1}: \text{all real numbers} \][/tex]
- The range of [tex]\( f^{-1} \)[/tex]: The range of the inverse function is the domain of the original function [tex]\( f \)[/tex]. Since the domain of [tex]\( f \)[/tex] is all real numbers, the range of [tex]\( f^{-1} \)[/tex] is:
[tex]\[ \text{Range of } f^{-1}: \text{all real numbers} \][/tex]
(d) Graph [tex]\( f \)[/tex], [tex]\( f^{-1} \)[/tex], and [tex]\( y = x \)[/tex] on the same set of axes.
To graph these functions:
1. Graph of [tex]\( f(x) = 4x + 3 \)[/tex]:
- It's a straight line with a slope of 4 and y-intercept of 3.
- Passes through points like [tex]\( (0, 3) \)[/tex] and [tex]\( (1, 7) \)[/tex].
2. Graph of [tex]\( f^{-1}(x) = \frac{x - 3}{4} \)[/tex]:
- It's a straight line with a slope of [tex]\( \frac{1}{4} \)[/tex] and y-intercept of [tex]\( -\frac{3}{4} \)[/tex].
- Passes through points like [tex]\( (3, 0) \)[/tex] and [tex]\( (7, 1) \)[/tex].
3. Graph of [tex]\( y = x \)[/tex]:
- It's the identity line that passes through points like [tex]\( (0, 0) \)[/tex] and [tex]\( (1, 1) \)[/tex].
These three lines should intersect at the points where the original function f and its inverse reflect across the line [tex]\( y = x \)[/tex].
So, the solution to the initial question is:
[tex]\[ f^{-1}(x) = \frac{x - 3}{4} \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.