IDNLearn.com is designed to help you find the answers you need quickly and easily. Our experts provide timely and precise responses to help you understand and solve any issue you face.
Sagot :
To evaluate the integral
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt, \][/tex]
we need to integrate each component of the vector separately.
1. Integral of the i-component:
[tex]\[ \int \frac{8}{1+t^2} dt \][/tex]
The integral of [tex]\(\frac{8}{1+t^2}\)[/tex] is [tex]\(8 \arctan(t)\)[/tex]. Thus, the i-component integral is:
[tex]\[ 8 \arctan(t) + C_1, \][/tex]
where [tex]\(C_1\)[/tex] is the constant of integration for the i-component.
2. Integral of the j-component:
[tex]\[ \int t e^{t^2} dt \][/tex]
Let [tex]\(u = t^2\)[/tex]. Then [tex]\(du = 2t \, dt\)[/tex] or [tex]\(dt = \frac{du}{2t}\)[/tex]. Substituting in the integral, we have:
[tex]\[ \int t e^{t^2} dt = \frac{1}{2} \int e^u du \][/tex]
The integral of [tex]\(e^u\)[/tex] is [tex]\(e^u\)[/tex]. Substituting back for [tex]\(u\)[/tex], we get:
[tex]\[ \frac{1}{2} e^{t^2} + C_2, \][/tex]
where [tex]\(C_2\)[/tex] is the constant of integration for the j-component.
3. Integral of the k-component:
[tex]\[ \int 5 \sqrt{t} dt \][/tex]
Recall that [tex]\(\sqrt{t} = t^{1/2}\)[/tex], so the integral becomes:
[tex]\[ \int 5 t^{1/2} dt \][/tex]
Using the power rule for integration, [tex]\(\int t^n dt = \frac{t^{n+1}}{n+1}\)[/tex], we get:
[tex]\[ 5 \cdot \frac{t^{3/2}}{3/2} = \frac{10}{3} t^{3/2} \][/tex]
Thus, the k-component integral is:
[tex]\[ \frac{10}{3} t^{3/2} + C_3, \][/tex]
where [tex]\(C_3\)[/tex] is the constant of integration for the k-component.
Combining all components, the integral is:
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt = \left( 8 \arctan(t) + C_1 \right)i + \left( \frac{1}{2} e^{t^2} + C_2 \right)j + \left( \frac{10}{3} t^{3/2} + C_3 \right)k, \][/tex]
where [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex] are constants of integration.
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt, \][/tex]
we need to integrate each component of the vector separately.
1. Integral of the i-component:
[tex]\[ \int \frac{8}{1+t^2} dt \][/tex]
The integral of [tex]\(\frac{8}{1+t^2}\)[/tex] is [tex]\(8 \arctan(t)\)[/tex]. Thus, the i-component integral is:
[tex]\[ 8 \arctan(t) + C_1, \][/tex]
where [tex]\(C_1\)[/tex] is the constant of integration for the i-component.
2. Integral of the j-component:
[tex]\[ \int t e^{t^2} dt \][/tex]
Let [tex]\(u = t^2\)[/tex]. Then [tex]\(du = 2t \, dt\)[/tex] or [tex]\(dt = \frac{du}{2t}\)[/tex]. Substituting in the integral, we have:
[tex]\[ \int t e^{t^2} dt = \frac{1}{2} \int e^u du \][/tex]
The integral of [tex]\(e^u\)[/tex] is [tex]\(e^u\)[/tex]. Substituting back for [tex]\(u\)[/tex], we get:
[tex]\[ \frac{1}{2} e^{t^2} + C_2, \][/tex]
where [tex]\(C_2\)[/tex] is the constant of integration for the j-component.
3. Integral of the k-component:
[tex]\[ \int 5 \sqrt{t} dt \][/tex]
Recall that [tex]\(\sqrt{t} = t^{1/2}\)[/tex], so the integral becomes:
[tex]\[ \int 5 t^{1/2} dt \][/tex]
Using the power rule for integration, [tex]\(\int t^n dt = \frac{t^{n+1}}{n+1}\)[/tex], we get:
[tex]\[ 5 \cdot \frac{t^{3/2}}{3/2} = \frac{10}{3} t^{3/2} \][/tex]
Thus, the k-component integral is:
[tex]\[ \frac{10}{3} t^{3/2} + C_3, \][/tex]
where [tex]\(C_3\)[/tex] is the constant of integration for the k-component.
Combining all components, the integral is:
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt = \left( 8 \arctan(t) + C_1 \right)i + \left( \frac{1}{2} e^{t^2} + C_2 \right)j + \left( \frac{10}{3} t^{3/2} + C_3 \right)k, \][/tex]
where [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex] are constants of integration.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.