IDNLearn.com provides a seamless experience for finding accurate answers. Get accurate answers to your questions from our community of experts who are always ready to provide timely and relevant solutions.
Sagot :
To evaluate the integral
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt, \][/tex]
we need to integrate each component of the vector separately.
1. Integral of the i-component:
[tex]\[ \int \frac{8}{1+t^2} dt \][/tex]
The integral of [tex]\(\frac{8}{1+t^2}\)[/tex] is [tex]\(8 \arctan(t)\)[/tex]. Thus, the i-component integral is:
[tex]\[ 8 \arctan(t) + C_1, \][/tex]
where [tex]\(C_1\)[/tex] is the constant of integration for the i-component.
2. Integral of the j-component:
[tex]\[ \int t e^{t^2} dt \][/tex]
Let [tex]\(u = t^2\)[/tex]. Then [tex]\(du = 2t \, dt\)[/tex] or [tex]\(dt = \frac{du}{2t}\)[/tex]. Substituting in the integral, we have:
[tex]\[ \int t e^{t^2} dt = \frac{1}{2} \int e^u du \][/tex]
The integral of [tex]\(e^u\)[/tex] is [tex]\(e^u\)[/tex]. Substituting back for [tex]\(u\)[/tex], we get:
[tex]\[ \frac{1}{2} e^{t^2} + C_2, \][/tex]
where [tex]\(C_2\)[/tex] is the constant of integration for the j-component.
3. Integral of the k-component:
[tex]\[ \int 5 \sqrt{t} dt \][/tex]
Recall that [tex]\(\sqrt{t} = t^{1/2}\)[/tex], so the integral becomes:
[tex]\[ \int 5 t^{1/2} dt \][/tex]
Using the power rule for integration, [tex]\(\int t^n dt = \frac{t^{n+1}}{n+1}\)[/tex], we get:
[tex]\[ 5 \cdot \frac{t^{3/2}}{3/2} = \frac{10}{3} t^{3/2} \][/tex]
Thus, the k-component integral is:
[tex]\[ \frac{10}{3} t^{3/2} + C_3, \][/tex]
where [tex]\(C_3\)[/tex] is the constant of integration for the k-component.
Combining all components, the integral is:
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt = \left( 8 \arctan(t) + C_1 \right)i + \left( \frac{1}{2} e^{t^2} + C_2 \right)j + \left( \frac{10}{3} t^{3/2} + C_3 \right)k, \][/tex]
where [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex] are constants of integration.
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt, \][/tex]
we need to integrate each component of the vector separately.
1. Integral of the i-component:
[tex]\[ \int \frac{8}{1+t^2} dt \][/tex]
The integral of [tex]\(\frac{8}{1+t^2}\)[/tex] is [tex]\(8 \arctan(t)\)[/tex]. Thus, the i-component integral is:
[tex]\[ 8 \arctan(t) + C_1, \][/tex]
where [tex]\(C_1\)[/tex] is the constant of integration for the i-component.
2. Integral of the j-component:
[tex]\[ \int t e^{t^2} dt \][/tex]
Let [tex]\(u = t^2\)[/tex]. Then [tex]\(du = 2t \, dt\)[/tex] or [tex]\(dt = \frac{du}{2t}\)[/tex]. Substituting in the integral, we have:
[tex]\[ \int t e^{t^2} dt = \frac{1}{2} \int e^u du \][/tex]
The integral of [tex]\(e^u\)[/tex] is [tex]\(e^u\)[/tex]. Substituting back for [tex]\(u\)[/tex], we get:
[tex]\[ \frac{1}{2} e^{t^2} + C_2, \][/tex]
where [tex]\(C_2\)[/tex] is the constant of integration for the j-component.
3. Integral of the k-component:
[tex]\[ \int 5 \sqrt{t} dt \][/tex]
Recall that [tex]\(\sqrt{t} = t^{1/2}\)[/tex], so the integral becomes:
[tex]\[ \int 5 t^{1/2} dt \][/tex]
Using the power rule for integration, [tex]\(\int t^n dt = \frac{t^{n+1}}{n+1}\)[/tex], we get:
[tex]\[ 5 \cdot \frac{t^{3/2}}{3/2} = \frac{10}{3} t^{3/2} \][/tex]
Thus, the k-component integral is:
[tex]\[ \frac{10}{3} t^{3/2} + C_3, \][/tex]
where [tex]\(C_3\)[/tex] is the constant of integration for the k-component.
Combining all components, the integral is:
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt = \left( 8 \arctan(t) + C_1 \right)i + \left( \frac{1}{2} e^{t^2} + C_2 \right)j + \left( \frac{10}{3} t^{3/2} + C_3 \right)k, \][/tex]
where [tex]\(C_1\)[/tex], [tex]\(C_2\)[/tex], and [tex]\(C_3\)[/tex] are constants of integration.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.