Find answers to your most challenging questions with the help of IDNLearn.com's experts. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Sure, let's solve this problem step by step.
We are given the following information:
- Mass of the substance, [tex]\( m = 0.158 \, \text{kg} \)[/tex]
- Heat added, [tex]\( q = 2510.0 \, \text{J} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 32.0 \, ^\circ \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 61.0 \, ^\circ \text{C} \)[/tex]
We need to find the specific heat capacity [tex]\( C_p \)[/tex] of the substance.
First, calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 61.0^\circ \text{C} - 32.0^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 29.0^\circ \text{C} \][/tex]
Next, we need to convert the mass from kilograms to grams since the potential answers for specific heat capacity are given in units of [tex]\( J / (g \cdot ^\circ C) \)[/tex]:
[tex]\[ 1 \, \text{kg} = 1000 \, \text{g} \][/tex]
[tex]\[ m = 0.158 \, \text{kg} \times 1000 \, \text{g/kg} = 158.0 \, \text{g} \][/tex]
Now, use the formula [tex]\( q = m C_p \Delta T \)[/tex] to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
[tex]\[ C_p = \frac{2510.0 \, \text{J}}{158.0 \, \text{g} \times 29.0^\circ \text{C}} \][/tex]
Perform the division:
[tex]\[ C_p = \frac{2510.0}{4582.0} \][/tex]
[tex]\[ C_p \approx 0.5478 \, J / (g \cdot ^\circ C) \][/tex]
Thus, the specific heat capacity of the substance is approximately [tex]\( 0.548 \, J / (g \cdot ^\circ C) \)[/tex]. The closest answer is:
[tex]\[ \boxed{0.548 \, J / (g \cdot ^\circ C)} \][/tex]
We are given the following information:
- Mass of the substance, [tex]\( m = 0.158 \, \text{kg} \)[/tex]
- Heat added, [tex]\( q = 2510.0 \, \text{J} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 32.0 \, ^\circ \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 61.0 \, ^\circ \text{C} \)[/tex]
We need to find the specific heat capacity [tex]\( C_p \)[/tex] of the substance.
First, calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 61.0^\circ \text{C} - 32.0^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 29.0^\circ \text{C} \][/tex]
Next, we need to convert the mass from kilograms to grams since the potential answers for specific heat capacity are given in units of [tex]\( J / (g \cdot ^\circ C) \)[/tex]:
[tex]\[ 1 \, \text{kg} = 1000 \, \text{g} \][/tex]
[tex]\[ m = 0.158 \, \text{kg} \times 1000 \, \text{g/kg} = 158.0 \, \text{g} \][/tex]
Now, use the formula [tex]\( q = m C_p \Delta T \)[/tex] to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
[tex]\[ C_p = \frac{2510.0 \, \text{J}}{158.0 \, \text{g} \times 29.0^\circ \text{C}} \][/tex]
Perform the division:
[tex]\[ C_p = \frac{2510.0}{4582.0} \][/tex]
[tex]\[ C_p \approx 0.5478 \, J / (g \cdot ^\circ C) \][/tex]
Thus, the specific heat capacity of the substance is approximately [tex]\( 0.548 \, J / (g \cdot ^\circ C) \)[/tex]. The closest answer is:
[tex]\[ \boxed{0.548 \, J / (g \cdot ^\circ C)} \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.