Get the information you need with the help of IDNLearn.com's extensive Q&A platform. Get prompt and accurate answers to your questions from our experts who are always ready to help.
Sagot :
Absolutely! Let's derive the difference of the quotient [tex]\(\Delta\left[\frac{f(x)}{g(x)}\right]\)[/tex] step by step.
Firstly, we start with the definition of the difference operator [tex]\(\Delta\)[/tex] applied to a general function [tex]\(h(x)\)[/tex]:
[tex]\[ \Delta h(x) = h(x+h) - h(x) \][/tex]
Given two functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], we want to find [tex]\(\Delta\left[\frac{f(x)}{g(x)}\right]\)[/tex]. Note that:
[tex]\[ \Delta\left[\frac{f(x)}{g(x)}\right] = \left(\frac{f(x)}{g(x)}\right)(x+h) - \left(\frac{f(x)}{g(x)}\right)(x) \][/tex]
Let's denote [tex]\(F(x) = \frac{f(x)}{g(x)}\)[/tex]. Applying the definition of [tex]\(\Delta\)[/tex], we get:
[tex]\[ \Delta F(x) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} \][/tex]
To combine these fractions, we find a common denominator:
[tex]\[ \Delta F(x) = \frac{f(x+h)g(x) - f(x)g(x+h)}{g(x+h)g(x)} \][/tex]
Next, we break this expression into parts that are easier to manage by introducing the differences [tex]\(\Delta f(x)\)[/tex] and [tex]\(\Delta g(x)\)[/tex]:
[tex]\[ \Delta f(x) = f(x+h) - f(x) \quad \text{and} \quad \Delta g(x) = g(x+h) - g(x) \][/tex]
Using these definitions, we can rewrite [tex]\(f(x+h)\)[/tex] and [tex]\(g(x+h)\)[/tex] in terms of the differences:
[tex]\[ f(x+h) = f(x) + \Delta f(x) \quad \text{and} \quad g(x+h) = g(x) + \Delta g(x) \][/tex]
Now substitute these into the expression for [tex]\(\Delta F(x)\)[/tex]:
[tex]\[ \Delta F(x) = \frac{(f(x) + \Delta f(x))g(x) - f(x)(g(x) + \Delta g(x))}{g(x+h)g(x)} \][/tex]
Expanding the numerator, we obtain:
[tex]\[ \Delta F(x) = \frac{f(x)g(x) + \Delta f(x)g(x) - f(x)g(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Simplifying the terms in the numerator:
[tex]\[ \Delta F(x) = \frac{\Delta f(x)g(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Hence, we have derived the expression:
[tex]\[ \Delta\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Thus, we've completed the proof.
Firstly, we start with the definition of the difference operator [tex]\(\Delta\)[/tex] applied to a general function [tex]\(h(x)\)[/tex]:
[tex]\[ \Delta h(x) = h(x+h) - h(x) \][/tex]
Given two functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], we want to find [tex]\(\Delta\left[\frac{f(x)}{g(x)}\right]\)[/tex]. Note that:
[tex]\[ \Delta\left[\frac{f(x)}{g(x)}\right] = \left(\frac{f(x)}{g(x)}\right)(x+h) - \left(\frac{f(x)}{g(x)}\right)(x) \][/tex]
Let's denote [tex]\(F(x) = \frac{f(x)}{g(x)}\)[/tex]. Applying the definition of [tex]\(\Delta\)[/tex], we get:
[tex]\[ \Delta F(x) = \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} \][/tex]
To combine these fractions, we find a common denominator:
[tex]\[ \Delta F(x) = \frac{f(x+h)g(x) - f(x)g(x+h)}{g(x+h)g(x)} \][/tex]
Next, we break this expression into parts that are easier to manage by introducing the differences [tex]\(\Delta f(x)\)[/tex] and [tex]\(\Delta g(x)\)[/tex]:
[tex]\[ \Delta f(x) = f(x+h) - f(x) \quad \text{and} \quad \Delta g(x) = g(x+h) - g(x) \][/tex]
Using these definitions, we can rewrite [tex]\(f(x+h)\)[/tex] and [tex]\(g(x+h)\)[/tex] in terms of the differences:
[tex]\[ f(x+h) = f(x) + \Delta f(x) \quad \text{and} \quad g(x+h) = g(x) + \Delta g(x) \][/tex]
Now substitute these into the expression for [tex]\(\Delta F(x)\)[/tex]:
[tex]\[ \Delta F(x) = \frac{(f(x) + \Delta f(x))g(x) - f(x)(g(x) + \Delta g(x))}{g(x+h)g(x)} \][/tex]
Expanding the numerator, we obtain:
[tex]\[ \Delta F(x) = \frac{f(x)g(x) + \Delta f(x)g(x) - f(x)g(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Simplifying the terms in the numerator:
[tex]\[ \Delta F(x) = \frac{\Delta f(x)g(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Hence, we have derived the expression:
[tex]\[ \Delta\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x+h)g(x)} \][/tex]
Thus, we've completed the proof.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.