Discover the best answers to your questions with the help of IDNLearn.com. Our platform provides accurate, detailed responses to help you navigate any topic with ease.
Sagot :
To solve the equation [tex]\(\frac{2}{x+4} = 3^x + 1\)[/tex] using successive approximations, we start with an initial guess for [tex]\(x\)[/tex], typically denoted as [tex]\(x_0\)[/tex]. After that, we iteratively refine this guess.
1. Initial guess [tex]\(x_0 = 0\)[/tex]:
- Start with [tex]\(x_0 = 0\)[/tex].
2. First iteration ([tex]\(x_1\)[/tex]):
- Compute [tex]\(f(x_0)\)[/tex] where [tex]\(f(x) = \frac{2}{x+4} - 3^x - 1\)[/tex].
- [tex]\(f(0) = \frac{2}{0+4} - 3^0 - 1 = \frac{2}{4} - 1 - 1 = 0.5 - 1 - 1 = -1.5\)[/tex].
- Update [tex]\(x_1 = f(x_0) + x_0 = -1.5 + 0 = -1.5\)[/tex].
3. Second iteration ([tex]\(x_2\)[/tex]):
- Compute [tex]\(f(x_1)\)[/tex].
- [tex]\(f(-1.5) = \frac{2}{-1.5+4} - 3^{-1.5} - 1 \approx \frac{2}{2.5} - 0.1924500897 - 1 \)[/tex].
- Update [tex]\(x_2 = f(x_1) + x_1 \approx -0.3924500897 + (-1.5) \approx -1.8924500897\)[/tex].
4. Third iteration ([tex]\(x_3\)[/tex]):
- Compute [tex]\(f(x_2)\)[/tex].
- [tex]\(f(-1.8924500897) = \frac{2}{-1.8924500897+4} - 3^{-1.8924500897} - 1 \approx \frac{2}{2.1075499103} - 0.1760773632 - 1 \)[/tex].
- Update [tex]\(x_3 = f(x_2) + x_2 \approx -0.1760773632 + (-1.8924500897) \approx -2.06852745296\)[/tex].
Thus, after three iterations of successive approximations, the solution to the equation [tex]\(\frac{2}{x+4} = 3^x + 1\)[/tex] is approximately when [tex]\(x \approx -2.06852745296\)[/tex].
So, the correct answer to the given equation after three iterations is when [tex]\(x\)[/tex] is about [tex]\(\boxed{-2.06852745296}\)[/tex].
1. Initial guess [tex]\(x_0 = 0\)[/tex]:
- Start with [tex]\(x_0 = 0\)[/tex].
2. First iteration ([tex]\(x_1\)[/tex]):
- Compute [tex]\(f(x_0)\)[/tex] where [tex]\(f(x) = \frac{2}{x+4} - 3^x - 1\)[/tex].
- [tex]\(f(0) = \frac{2}{0+4} - 3^0 - 1 = \frac{2}{4} - 1 - 1 = 0.5 - 1 - 1 = -1.5\)[/tex].
- Update [tex]\(x_1 = f(x_0) + x_0 = -1.5 + 0 = -1.5\)[/tex].
3. Second iteration ([tex]\(x_2\)[/tex]):
- Compute [tex]\(f(x_1)\)[/tex].
- [tex]\(f(-1.5) = \frac{2}{-1.5+4} - 3^{-1.5} - 1 \approx \frac{2}{2.5} - 0.1924500897 - 1 \)[/tex].
- Update [tex]\(x_2 = f(x_1) + x_1 \approx -0.3924500897 + (-1.5) \approx -1.8924500897\)[/tex].
4. Third iteration ([tex]\(x_3\)[/tex]):
- Compute [tex]\(f(x_2)\)[/tex].
- [tex]\(f(-1.8924500897) = \frac{2}{-1.8924500897+4} - 3^{-1.8924500897} - 1 \approx \frac{2}{2.1075499103} - 0.1760773632 - 1 \)[/tex].
- Update [tex]\(x_3 = f(x_2) + x_2 \approx -0.1760773632 + (-1.8924500897) \approx -2.06852745296\)[/tex].
Thus, after three iterations of successive approximations, the solution to the equation [tex]\(\frac{2}{x+4} = 3^x + 1\)[/tex] is approximately when [tex]\(x \approx -2.06852745296\)[/tex].
So, the correct answer to the given equation after three iterations is when [tex]\(x\)[/tex] is about [tex]\(\boxed{-2.06852745296}\)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.