Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To solve the equation [tex]\(\frac{2}{x+4} = 3^x + 1\)[/tex] using successive approximations, we start with an initial guess for [tex]\(x\)[/tex], typically denoted as [tex]\(x_0\)[/tex]. After that, we iteratively refine this guess.
1. Initial guess [tex]\(x_0 = 0\)[/tex]:
- Start with [tex]\(x_0 = 0\)[/tex].
2. First iteration ([tex]\(x_1\)[/tex]):
- Compute [tex]\(f(x_0)\)[/tex] where [tex]\(f(x) = \frac{2}{x+4} - 3^x - 1\)[/tex].
- [tex]\(f(0) = \frac{2}{0+4} - 3^0 - 1 = \frac{2}{4} - 1 - 1 = 0.5 - 1 - 1 = -1.5\)[/tex].
- Update [tex]\(x_1 = f(x_0) + x_0 = -1.5 + 0 = -1.5\)[/tex].
3. Second iteration ([tex]\(x_2\)[/tex]):
- Compute [tex]\(f(x_1)\)[/tex].
- [tex]\(f(-1.5) = \frac{2}{-1.5+4} - 3^{-1.5} - 1 \approx \frac{2}{2.5} - 0.1924500897 - 1 \)[/tex].
- Update [tex]\(x_2 = f(x_1) + x_1 \approx -0.3924500897 + (-1.5) \approx -1.8924500897\)[/tex].
4. Third iteration ([tex]\(x_3\)[/tex]):
- Compute [tex]\(f(x_2)\)[/tex].
- [tex]\(f(-1.8924500897) = \frac{2}{-1.8924500897+4} - 3^{-1.8924500897} - 1 \approx \frac{2}{2.1075499103} - 0.1760773632 - 1 \)[/tex].
- Update [tex]\(x_3 = f(x_2) + x_2 \approx -0.1760773632 + (-1.8924500897) \approx -2.06852745296\)[/tex].
Thus, after three iterations of successive approximations, the solution to the equation [tex]\(\frac{2}{x+4} = 3^x + 1\)[/tex] is approximately when [tex]\(x \approx -2.06852745296\)[/tex].
So, the correct answer to the given equation after three iterations is when [tex]\(x\)[/tex] is about [tex]\(\boxed{-2.06852745296}\)[/tex].
1. Initial guess [tex]\(x_0 = 0\)[/tex]:
- Start with [tex]\(x_0 = 0\)[/tex].
2. First iteration ([tex]\(x_1\)[/tex]):
- Compute [tex]\(f(x_0)\)[/tex] where [tex]\(f(x) = \frac{2}{x+4} - 3^x - 1\)[/tex].
- [tex]\(f(0) = \frac{2}{0+4} - 3^0 - 1 = \frac{2}{4} - 1 - 1 = 0.5 - 1 - 1 = -1.5\)[/tex].
- Update [tex]\(x_1 = f(x_0) + x_0 = -1.5 + 0 = -1.5\)[/tex].
3. Second iteration ([tex]\(x_2\)[/tex]):
- Compute [tex]\(f(x_1)\)[/tex].
- [tex]\(f(-1.5) = \frac{2}{-1.5+4} - 3^{-1.5} - 1 \approx \frac{2}{2.5} - 0.1924500897 - 1 \)[/tex].
- Update [tex]\(x_2 = f(x_1) + x_1 \approx -0.3924500897 + (-1.5) \approx -1.8924500897\)[/tex].
4. Third iteration ([tex]\(x_3\)[/tex]):
- Compute [tex]\(f(x_2)\)[/tex].
- [tex]\(f(-1.8924500897) = \frac{2}{-1.8924500897+4} - 3^{-1.8924500897} - 1 \approx \frac{2}{2.1075499103} - 0.1760773632 - 1 \)[/tex].
- Update [tex]\(x_3 = f(x_2) + x_2 \approx -0.1760773632 + (-1.8924500897) \approx -2.06852745296\)[/tex].
Thus, after three iterations of successive approximations, the solution to the equation [tex]\(\frac{2}{x+4} = 3^x + 1\)[/tex] is approximately when [tex]\(x \approx -2.06852745296\)[/tex].
So, the correct answer to the given equation after three iterations is when [tex]\(x\)[/tex] is about [tex]\(\boxed{-2.06852745296}\)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.