Join the IDNLearn.com community and start finding the answers you need today. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
Certainly! Let's walk through the steps to solve for the force constant (spring constant) of the spring and find the extensions caused by the given masses.
### Step-by-Step Solution:
1. Initial Length of the Spring:
The initial length of the spring, \( L_0 \), is \( 30 \text{ cm} \).
2. Final Length with 60g Mass:
When an object of mass \( 60 \text{ g} \) is added, the length becomes \( 32.5 \text{ cm} \).
3. Final Length with 100g Mass:
When an object of mass \( 100 \text{ g} \) is added, the length becomes \( 34.5 \text{ cm} \).
4. Calculate Extensions:
- Extension with 60g:
[tex]\[ \Delta x_{60} = 32.5 \text{ cm} - 30 \text{ cm} = 2.5 \text{ cm} \][/tex]
Convert to meters:
[tex]\[ \Delta x_{60} = 2.5 \text{ cm} \times 0.01 = 0.025 \text{ m} \][/tex]
- Extension with 100g:
[tex]\[ \Delta x_{100} = 34.5 \text{ cm} - 30 \text{ cm} = 4.5 \text{ cm} \][/tex]
Convert to meters:
[tex]\[ \Delta x_{100} = 4.5 \text{ cm} \times 0.01 = 0.045 \text{ m} \][/tex]
5. Convert Mass to Kilograms:
- Mass of 60g:
[tex]\[ m_{60} = 60 \text{ g} \times 0.001 = 0.06 \text{ kg} \][/tex]
- Mass of 100g:
[tex]\[ m_{100} = 100 \text{ g} \times 0.001 = 0.1 \text{ kg} \][/tex]
6. Calculate the Forces:
Using \( F = m \times g \) where \( g = 9.8 \text{ m/s}^2 \):
- Force with 60g:
[tex]\[ F_{60} = 0.06 \text{ kg} \times 9.8 \text{ m/s}^2 = 0.588 \text{ N} \][/tex]
- Force with 100g:
[tex]\[ F_{100} = 0.1 \text{ kg} \times 9.8 \text{ m/s}^2 = 0.98 \text{ N} \][/tex]
7. Calculate the Force Constant (k):
Using Hooke's Law \( F = k \times \Delta x \):
- For 60g:
[tex]\[ k_{60} = \frac{F_{60}}{\Delta x_{60}} = \frac{0.588 \text{ N}}{0.025 \text{ m}} = 23.52 \text{ N/m} \][/tex]
- For 100g:
[tex]\[ k_{100} = \frac{F_{100}}{\Delta x_{100}} = \frac{0.98 \text{ N}}{0.045 \text{ m}} = 21.78 \text{ N/m} \][/tex]
8. Average Force Constant:
Since the spring constant \( k \) should be consistent, we average the two calculated values to get a more accurate result:
[tex]\[ k = \frac{k_{60} + k_{100}}{2} = \frac{23.52 \text{ N/m} + 21.78 \text{ N/m}}{2} = 22.65 \text{ N/m} \][/tex]
### Summary:
- Extension with 60g mass: \( 0.025 \text{ m} \)
- Extension with 100g mass: \( 0.045 \text{ m} \)
- Force with 60g mass: \( 0.588 \text{ N} \)
- Force with 100g mass: \( 0.98 \text{ N} \)
- Average force constant: \( 22.65 \text{ N/m} \)
These steps provide detailed calculations leading to the determination of the spring's force constant.
### Step-by-Step Solution:
1. Initial Length of the Spring:
The initial length of the spring, \( L_0 \), is \( 30 \text{ cm} \).
2. Final Length with 60g Mass:
When an object of mass \( 60 \text{ g} \) is added, the length becomes \( 32.5 \text{ cm} \).
3. Final Length with 100g Mass:
When an object of mass \( 100 \text{ g} \) is added, the length becomes \( 34.5 \text{ cm} \).
4. Calculate Extensions:
- Extension with 60g:
[tex]\[ \Delta x_{60} = 32.5 \text{ cm} - 30 \text{ cm} = 2.5 \text{ cm} \][/tex]
Convert to meters:
[tex]\[ \Delta x_{60} = 2.5 \text{ cm} \times 0.01 = 0.025 \text{ m} \][/tex]
- Extension with 100g:
[tex]\[ \Delta x_{100} = 34.5 \text{ cm} - 30 \text{ cm} = 4.5 \text{ cm} \][/tex]
Convert to meters:
[tex]\[ \Delta x_{100} = 4.5 \text{ cm} \times 0.01 = 0.045 \text{ m} \][/tex]
5. Convert Mass to Kilograms:
- Mass of 60g:
[tex]\[ m_{60} = 60 \text{ g} \times 0.001 = 0.06 \text{ kg} \][/tex]
- Mass of 100g:
[tex]\[ m_{100} = 100 \text{ g} \times 0.001 = 0.1 \text{ kg} \][/tex]
6. Calculate the Forces:
Using \( F = m \times g \) where \( g = 9.8 \text{ m/s}^2 \):
- Force with 60g:
[tex]\[ F_{60} = 0.06 \text{ kg} \times 9.8 \text{ m/s}^2 = 0.588 \text{ N} \][/tex]
- Force with 100g:
[tex]\[ F_{100} = 0.1 \text{ kg} \times 9.8 \text{ m/s}^2 = 0.98 \text{ N} \][/tex]
7. Calculate the Force Constant (k):
Using Hooke's Law \( F = k \times \Delta x \):
- For 60g:
[tex]\[ k_{60} = \frac{F_{60}}{\Delta x_{60}} = \frac{0.588 \text{ N}}{0.025 \text{ m}} = 23.52 \text{ N/m} \][/tex]
- For 100g:
[tex]\[ k_{100} = \frac{F_{100}}{\Delta x_{100}} = \frac{0.98 \text{ N}}{0.045 \text{ m}} = 21.78 \text{ N/m} \][/tex]
8. Average Force Constant:
Since the spring constant \( k \) should be consistent, we average the two calculated values to get a more accurate result:
[tex]\[ k = \frac{k_{60} + k_{100}}{2} = \frac{23.52 \text{ N/m} + 21.78 \text{ N/m}}{2} = 22.65 \text{ N/m} \][/tex]
### Summary:
- Extension with 60g mass: \( 0.025 \text{ m} \)
- Extension with 100g mass: \( 0.045 \text{ m} \)
- Force with 60g mass: \( 0.588 \text{ N} \)
- Force with 100g mass: \( 0.98 \text{ N} \)
- Average force constant: \( 22.65 \text{ N/m} \)
These steps provide detailed calculations leading to the determination of the spring's force constant.
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.