Experience the convenience of getting your questions answered at IDNLearn.com. Find the solutions you need quickly and accurately with help from our knowledgeable community.
Sagot :
To minimize the labor cost function \(L(x, y) = \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116\), we need to find the critical points by taking the partial derivatives of \(L\) with respect to \(x\) and \(y\), and setting them equal to zero.
First, we compute the partial derivative of \(L\) with respect to \(x\):
[tex]\[ L_x = \frac{\partial}{\partial x} \left( \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116 \right) \][/tex]
Calculating each term separately, we get:
[tex]\[ \frac{\partial}{\partial x} \left( \frac{3}{2}x^2 \right) = 3x \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( y^2 \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -4x \right) = -4 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -6y \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -2xy \right) = -2y \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( 116 \right) = 0 \][/tex]
Combining these, we have:
[tex]\[ L_x = 3x - 4 - 2y \][/tex]
Next, we compute the partial derivative of \(L\) with respect to \(y\):
[tex]\[ L_y = \frac{\partial}{\partial y} \left( \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116 \right) \][/tex]
Calculating each term separately, we get:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{3}{2}x^2 \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( y^2 \right) = 2y \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -4x \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -6y \right) = -6 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -2xy \right) = -2x \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( 116 \right) = 0 \][/tex]
Combining these, we have:
[tex]\[ L_y = 2y - 6 - 2x \][/tex]
To find the critical points, we set \(L_x = 0\) and \(L_y = 0\):
[tex]\[ 3x - 4 - 2y = 0 \quad \text{(1)} \][/tex]
[tex]\[ 2y - 6 - 2x = 0 \quad \text{(2)} \][/tex]
First, let's solve equation (2) for \(y\):
[tex]\[ 2y - 6 - 2x = 0 \][/tex]
[tex]\[ 2y = 2x + 6 \][/tex]
[tex]\[ y = x + 3 \][/tex]
Now, substitute \(y = x + 3\) into equation (1):
[tex]\[ 3x - 4 - 2(x + 3) = 0 \][/tex]
[tex]\[ 3x - 4 - 2x - 6 = 0 \][/tex]
[tex]\[ x - 10 = 0 \][/tex]
[tex]\[ x = 10 \][/tex]
Using \(x = 10\) in \(y = x + 3\), we get:
[tex]\[ y = 10 + 3 \][/tex]
[tex]\[ y = 13 \][/tex]
Thus, the values of \(x\) and \(y\) that minimize the labor cost are \(x = 10\) hours and \(y = 13\) hours.
Now, we find the minimum labor cost by substituting \(x = 10\) and \(y = 13\) back into the labor cost function \(L(x, y)\):
[tex]\[ L(10, 13) = \frac{3}{2} (10)^2 + (13)^2 - 4(10) - 6(13) - 2(10)(13) + 116 \][/tex]
Calculate step by step:
[tex]\[ \frac{3}{2} (10)^2 = \frac{3}{2} \cdot 100 = 150 \][/tex]
[tex]\[ (13)^2 = 169 \][/tex]
[tex]\[ -4(10) = -40 \][/tex]
[tex]\[ -6(13) = -78 \][/tex]
[tex]\[ -2(10)(13) = -260 \][/tex]
[tex]\[ 116 \][/tex]
Now, combine these results:
[tex]\[ L(10, 13) = 150 + 169 - 40 - 78 - 260 + 116 \][/tex]
Calculate the total:
[tex]\[ L(10, 13) = 57 \][/tex]
Thus, the minimum labor cost is $57.
To summarize, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that minimize the labor cost are [tex]\(x = 10\)[/tex] and [tex]\(y = 13\)[/tex], and the minimum labor cost is $57.
First, we compute the partial derivative of \(L\) with respect to \(x\):
[tex]\[ L_x = \frac{\partial}{\partial x} \left( \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116 \right) \][/tex]
Calculating each term separately, we get:
[tex]\[ \frac{\partial}{\partial x} \left( \frac{3}{2}x^2 \right) = 3x \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( y^2 \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -4x \right) = -4 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -6y \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( -2xy \right) = -2y \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( 116 \right) = 0 \][/tex]
Combining these, we have:
[tex]\[ L_x = 3x - 4 - 2y \][/tex]
Next, we compute the partial derivative of \(L\) with respect to \(y\):
[tex]\[ L_y = \frac{\partial}{\partial y} \left( \frac{3}{2} x^2 + y^2 - 4x - 6y - 2xy + 116 \right) \][/tex]
Calculating each term separately, we get:
[tex]\[ \frac{\partial}{\partial y} \left( \frac{3}{2}x^2 \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( y^2 \right) = 2y \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -4x \right) = 0 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -6y \right) = -6 \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( -2xy \right) = -2x \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( 116 \right) = 0 \][/tex]
Combining these, we have:
[tex]\[ L_y = 2y - 6 - 2x \][/tex]
To find the critical points, we set \(L_x = 0\) and \(L_y = 0\):
[tex]\[ 3x - 4 - 2y = 0 \quad \text{(1)} \][/tex]
[tex]\[ 2y - 6 - 2x = 0 \quad \text{(2)} \][/tex]
First, let's solve equation (2) for \(y\):
[tex]\[ 2y - 6 - 2x = 0 \][/tex]
[tex]\[ 2y = 2x + 6 \][/tex]
[tex]\[ y = x + 3 \][/tex]
Now, substitute \(y = x + 3\) into equation (1):
[tex]\[ 3x - 4 - 2(x + 3) = 0 \][/tex]
[tex]\[ 3x - 4 - 2x - 6 = 0 \][/tex]
[tex]\[ x - 10 = 0 \][/tex]
[tex]\[ x = 10 \][/tex]
Using \(x = 10\) in \(y = x + 3\), we get:
[tex]\[ y = 10 + 3 \][/tex]
[tex]\[ y = 13 \][/tex]
Thus, the values of \(x\) and \(y\) that minimize the labor cost are \(x = 10\) hours and \(y = 13\) hours.
Now, we find the minimum labor cost by substituting \(x = 10\) and \(y = 13\) back into the labor cost function \(L(x, y)\):
[tex]\[ L(10, 13) = \frac{3}{2} (10)^2 + (13)^2 - 4(10) - 6(13) - 2(10)(13) + 116 \][/tex]
Calculate step by step:
[tex]\[ \frac{3}{2} (10)^2 = \frac{3}{2} \cdot 100 = 150 \][/tex]
[tex]\[ (13)^2 = 169 \][/tex]
[tex]\[ -4(10) = -40 \][/tex]
[tex]\[ -6(13) = -78 \][/tex]
[tex]\[ -2(10)(13) = -260 \][/tex]
[tex]\[ 116 \][/tex]
Now, combine these results:
[tex]\[ L(10, 13) = 150 + 169 - 40 - 78 - 260 + 116 \][/tex]
Calculate the total:
[tex]\[ L(10, 13) = 57 \][/tex]
Thus, the minimum labor cost is $57.
To summarize, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that minimize the labor cost are [tex]\(x = 10\)[/tex] and [tex]\(y = 13\)[/tex], and the minimum labor cost is $57.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.