Explore a diverse range of topics and get expert answers on IDNLearn.com. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.
Sagot :
To find the exact values of \(\cos \alpha\) and \(\cos(2\alpha)\) given that \(\sin \alpha = \frac{9}{13}\) and \(\alpha\) is in Quadrant II, we need to follow these steps:
1. Determine \(\cos \alpha\) using the Pythagorean identity.
We start with the Pythagorean identity:
[tex]\[ \sin^2 \alpha + \cos^2 \alpha = 1 \][/tex]
Plugging in the given value \(\sin \alpha = \frac{9}{13}\):
[tex]\[ \left( \frac{9}{13} \right)^2 + \cos^2 \alpha = 1 \][/tex]
[tex]\[ \frac{81}{169} + \cos^2 \alpha = 1 \][/tex]
Solving for \(\cos^2 \alpha\):
[tex]\[ \cos^2 \alpha = 1 - \frac{81}{169} \][/tex]
[tex]\[ \cos^2 \alpha = \frac{169}{169} - \frac{81}{169} \][/tex]
[tex]\[ \cos^2 \alpha = \frac{88}{169} \][/tex]
Taking the square root of both sides to find \(\cos \alpha\):
[tex]\[ \cos \alpha = \pm \sqrt{\frac{88}{169}} \][/tex]
[tex]\[ \cos \alpha = \pm \frac{\sqrt{88}}{13} \][/tex]
Simplifying \(\sqrt{88}\):
[tex]\[ \sqrt{88} = \sqrt{4 \times 22} = 2 \sqrt{22} \][/tex]
[tex]\[ \cos \alpha = \pm \frac{2 \sqrt{22}}{13} \][/tex]
Since \(\alpha\) is in Quadrant II, \(\cos \alpha\) is negative:
[tex]\[ \cos \alpha = -\frac{2 \sqrt{22}}{13} \][/tex]
2. Calculate \(\cos(2\alpha)\) using the double-angle formula for cosine.
The double-angle formula for cosine is:
[tex]\[ \cos(2\alpha) = 2 \cos^2 \alpha - 1 \][/tex]
Substituting \(\cos \alpha = -\frac{2 \sqrt{22}}{13}\):
[tex]\[ \cos^2 \alpha = \left( -\frac{2 \sqrt{22}}{13} \right)^2 = \frac{88}{169} \][/tex]
Now, apply this to the double-angle formula:
[tex]\[ \cos(2\alpha) = 2 \left( \frac{88}{169} \right) - 1 \][/tex]
[tex]\[ \cos(2\alpha) = \frac{176}{169} - 1 \][/tex]
[tex]\[ \cos(2\alpha) = \frac{176}{169} - \frac{169}{169} \][/tex]
[tex]\[ \cos(2\alpha) = \frac{7}{169} \][/tex]
This fraction can be converted into a decimal form if needed:
[tex]\[ \cos(2\alpha) \approx 0.0414 \][/tex]
Thus, the value of [tex]\(\cos(2 \alpha)\)[/tex] is approximately [tex]\(0.0414\)[/tex].
1. Determine \(\cos \alpha\) using the Pythagorean identity.
We start with the Pythagorean identity:
[tex]\[ \sin^2 \alpha + \cos^2 \alpha = 1 \][/tex]
Plugging in the given value \(\sin \alpha = \frac{9}{13}\):
[tex]\[ \left( \frac{9}{13} \right)^2 + \cos^2 \alpha = 1 \][/tex]
[tex]\[ \frac{81}{169} + \cos^2 \alpha = 1 \][/tex]
Solving for \(\cos^2 \alpha\):
[tex]\[ \cos^2 \alpha = 1 - \frac{81}{169} \][/tex]
[tex]\[ \cos^2 \alpha = \frac{169}{169} - \frac{81}{169} \][/tex]
[tex]\[ \cos^2 \alpha = \frac{88}{169} \][/tex]
Taking the square root of both sides to find \(\cos \alpha\):
[tex]\[ \cos \alpha = \pm \sqrt{\frac{88}{169}} \][/tex]
[tex]\[ \cos \alpha = \pm \frac{\sqrt{88}}{13} \][/tex]
Simplifying \(\sqrt{88}\):
[tex]\[ \sqrt{88} = \sqrt{4 \times 22} = 2 \sqrt{22} \][/tex]
[tex]\[ \cos \alpha = \pm \frac{2 \sqrt{22}}{13} \][/tex]
Since \(\alpha\) is in Quadrant II, \(\cos \alpha\) is negative:
[tex]\[ \cos \alpha = -\frac{2 \sqrt{22}}{13} \][/tex]
2. Calculate \(\cos(2\alpha)\) using the double-angle formula for cosine.
The double-angle formula for cosine is:
[tex]\[ \cos(2\alpha) = 2 \cos^2 \alpha - 1 \][/tex]
Substituting \(\cos \alpha = -\frac{2 \sqrt{22}}{13}\):
[tex]\[ \cos^2 \alpha = \left( -\frac{2 \sqrt{22}}{13} \right)^2 = \frac{88}{169} \][/tex]
Now, apply this to the double-angle formula:
[tex]\[ \cos(2\alpha) = 2 \left( \frac{88}{169} \right) - 1 \][/tex]
[tex]\[ \cos(2\alpha) = \frac{176}{169} - 1 \][/tex]
[tex]\[ \cos(2\alpha) = \frac{176}{169} - \frac{169}{169} \][/tex]
[tex]\[ \cos(2\alpha) = \frac{7}{169} \][/tex]
This fraction can be converted into a decimal form if needed:
[tex]\[ \cos(2\alpha) \approx 0.0414 \][/tex]
Thus, the value of [tex]\(\cos(2 \alpha)\)[/tex] is approximately [tex]\(0.0414\)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.