IDNLearn.com provides a collaborative environment for finding and sharing knowledge. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

In which scenario will the two objects have the least gravitational force between them?

A. Mass of object 1 = [tex]12 \, \text{kg}[/tex]
Mass of object 2 = [tex]12 \, \text{kg}[/tex]
Distance between objects = [tex]1.5 \, \text{m}[/tex]

B. Mass of object 1 = [tex]15 \, \text{kg}[/tex]
Mass of object 2 = [tex]12 \, \text{kg}[/tex]
Distance between objects = [tex]1.5 \, \text{m}[/tex]

C. Mass of object 1 = [tex]15 \, \text{kg}[/tex]
Mass of object 2 = [tex]12 \, \text{kg}[/tex]
Distance between objects = [tex]0.5 \, \text{m}[/tex]

D. Mass of object 1 = [tex]12 \, \text{kg}[/tex]
Mass of object 2 = [tex]12 \, \text{kg}[/tex]
Distance between objects = [tex]0.5 \, \text{m}[/tex]


Sagot :

To determine the scenario with the least gravitational force between two objects, we will utilize the formula for gravitational force:

[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]

where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, and [tex]\( r \)[/tex] is the distance between the centers of the two masses.

Let's go through each scenario step-by-step:

### Scenario A:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 12 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 1.5 m

Gravitational force equation:
[tex]\[ F_A = G \frac{12 \times 12}{(1.5)^2} \][/tex]
[tex]\[ F_A = G \frac{144}{2.25} \][/tex]
[tex]\[ F_A = 64 G \][/tex]

Numerically, this gives:
[tex]\[ F_A = 4.271552 \times 10^{-9} \, \text{N} \][/tex]

### Scenario B:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 15 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 1.5 m

Gravitational force equation:
[tex]\[ F_B = G \frac{15 \times 12}{(1.5)^2} \][/tex]
[tex]\[ F_B = G \frac{180}{2.25} \][/tex]
[tex]\[ F_B = 80 G \][/tex]

Numerically, this gives:
[tex]\[ F_B = 5.339440 \times 10^{-9} \, \text{N} \][/tex]

### Scenario C:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 15 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 0.5 m

Gravitational force equation:
[tex]\[ F_C = G \frac{15 \times 12}{(0.5)^2} \][/tex]
[tex]\[ F_C = G \frac{180}{0.25} \][/tex]
[tex]\[ F_C = 720 G \][/tex]

Numerically, this gives:
[tex]\[ F_C = 48.05496 \times 10^{-9} \, \text{N} \][/tex]

### Scenario D:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 12 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 0.5 m

Gravitational force equation:
[tex]\[ F_D = G \frac{12 \times 12}{(0.5)^2} \][/tex]
[tex]\[ F_D = G \frac{144}{0.25} \][/tex]
[tex]\[ F_D = 576 G \][/tex]

Numerically, this gives:
[tex]\[ F_D = 38.443968 \times 10^{-9} \, \text{N} \][/tex]

### Conclusion:
Comparing the calculated forces:
- [tex]\( F_A = 4.271552 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_B = 5.339440 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_C = 48.05496 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_D = 38.443968 \times 10^{-9} \, \text{N} \)[/tex]

The smallest force is [tex]\( F_A = 4.271552 \times 10^{-9} \, \text{N} \)[/tex], which occurs in Scenario A.

Thus, the scenario with the least gravitational force between the objects is Scenario A.