Discover a world of knowledge and community-driven answers at IDNLearn.com today. Get accurate and detailed answers to your questions from our knowledgeable and dedicated community members.
Sagot :
To find the EMF generated in a solenoid when the magnetic flux changes, we can use Faraday's law of electromagnetic induction. Faraday's law states that the induced electromotive force (EMF) in a coil is directly proportional to the rate of change of magnetic flux through the coil. The formula for EMF is given by:
[tex]\[ \text{EMF} = -N \frac{d\Phi}{dt} \][/tex]
where:
- [tex]\( \text{EMF} \)[/tex] is the electromotive force,
- [tex]\( N \)[/tex] is the number of loops in the solenoid,
- [tex]\( \Phi \)[/tex] (phi) is the magnetic flux,
- [tex]\( \frac{d\Phi}{dt} \)[/tex] is the rate of change of magnetic flux.
Given the data:
- Initial magnetic flux, [tex]\(\Phi_{\text{initial}} = 6.78 \times 10^{-4} \, \text{Wb}\)[/tex]
- Final magnetic flux, [tex]\(\Phi_{\text{final}} = 1.33 \times 10^{-4} \, \text{Wb}\)[/tex]
- Time interval, [tex]\( \Delta t = 0.0333 \, \text{s} \)[/tex]
- Number of loops, [tex]\( N = 605 \)[/tex]
1. Calculate the change in magnetic flux ([tex]\( \Delta \Phi \)[/tex]):
[tex]\[ \Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} \][/tex]
Substitute the given values:
[tex]\[ \Delta \Phi = 1.33 \times 10^{-4} \, \text{Wb} - 6.78 \times 10^{-4} \, \text{Wb} \][/tex]
[tex]\[ \Delta \Phi = -5.45 \times 10^{-4} \, \text{Wb} \][/tex]
2. Determine the rate of change of magnetic flux ([tex]\( \frac{d\Phi}{dt} \)[/tex]):
[tex]\[ \frac{\Delta \Phi}{\Delta t} = \frac{-5.45 \times 10^{-4} \, \text{Wb}}{0.0333 \, \text{s}} \][/tex]
[tex]\[ \frac{\Delta \Phi}{\Delta t} = -0.01637 \, \text{Wb/s} \][/tex]
3. Calculate the EMF generated:
[tex]\[ \text{EMF} = -N \frac{\Delta \Phi}{\Delta t} \][/tex]
Substitute [tex]\( N = 605 \)[/tex] and [tex]\( \frac{\Delta \Phi}{\Delta t} = -0.01637 \, \text{Wb/s} \)[/tex]:
[tex]\[ \text{EMF} = -605 \times (-0.01637 \, \text{Wb/s}) \][/tex]
[tex]\[ \text{EMF} = 9.901 \, \text{Volts} \][/tex]
Therefore, the EMF generated in the solenoid is approximately [tex]\(\boxed{9.901 \, \text{Volts}}\)[/tex].
[tex]\[ \text{EMF} = -N \frac{d\Phi}{dt} \][/tex]
where:
- [tex]\( \text{EMF} \)[/tex] is the electromotive force,
- [tex]\( N \)[/tex] is the number of loops in the solenoid,
- [tex]\( \Phi \)[/tex] (phi) is the magnetic flux,
- [tex]\( \frac{d\Phi}{dt} \)[/tex] is the rate of change of magnetic flux.
Given the data:
- Initial magnetic flux, [tex]\(\Phi_{\text{initial}} = 6.78 \times 10^{-4} \, \text{Wb}\)[/tex]
- Final magnetic flux, [tex]\(\Phi_{\text{final}} = 1.33 \times 10^{-4} \, \text{Wb}\)[/tex]
- Time interval, [tex]\( \Delta t = 0.0333 \, \text{s} \)[/tex]
- Number of loops, [tex]\( N = 605 \)[/tex]
1. Calculate the change in magnetic flux ([tex]\( \Delta \Phi \)[/tex]):
[tex]\[ \Delta \Phi = \Phi_{\text{final}} - \Phi_{\text{initial}} \][/tex]
Substitute the given values:
[tex]\[ \Delta \Phi = 1.33 \times 10^{-4} \, \text{Wb} - 6.78 \times 10^{-4} \, \text{Wb} \][/tex]
[tex]\[ \Delta \Phi = -5.45 \times 10^{-4} \, \text{Wb} \][/tex]
2. Determine the rate of change of magnetic flux ([tex]\( \frac{d\Phi}{dt} \)[/tex]):
[tex]\[ \frac{\Delta \Phi}{\Delta t} = \frac{-5.45 \times 10^{-4} \, \text{Wb}}{0.0333 \, \text{s}} \][/tex]
[tex]\[ \frac{\Delta \Phi}{\Delta t} = -0.01637 \, \text{Wb/s} \][/tex]
3. Calculate the EMF generated:
[tex]\[ \text{EMF} = -N \frac{\Delta \Phi}{\Delta t} \][/tex]
Substitute [tex]\( N = 605 \)[/tex] and [tex]\( \frac{\Delta \Phi}{\Delta t} = -0.01637 \, \text{Wb/s} \)[/tex]:
[tex]\[ \text{EMF} = -605 \times (-0.01637 \, \text{Wb/s}) \][/tex]
[tex]\[ \text{EMF} = 9.901 \, \text{Volts} \][/tex]
Therefore, the EMF generated in the solenoid is approximately [tex]\(\boxed{9.901 \, \text{Volts}}\)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.